cathy的博客

作为硬件工程师,关注好这几点对嵌入式硬件设计至关重要

嵌入式设计是个庞大的工程,今天就说说硬件电路设计方面的几个注意事项,首先,咱们了解下嵌入式的硬件构架。

我们知道,CPU是这个系统的灵魂,所有的外围配置都与其相关联,这也突出了嵌入式设计的一个特点硬件可剪裁。在做嵌入式硬件设计中,以下几点需要关注。

第一、电源确定

电源对于嵌入式系统中的作用可以看做是空气对人体的作用,甚至更重要:人呼吸的空气中有氧气、二氧化碳和氮气等但是含量稳定,这就相当于电源系统中各种杂波,我们希望得到纯净和稳定符合要求的电源,但由于各种因素制约,只是我们的梦想。这个要关注两个方面:

a、电压

嵌入式系统需要各种量级的电源比如常见的5v、3.3v、1.8v等,为尽量减小电源的纹波,在嵌入式系统中使用LDO器件。如果采用DCDC不仅个头大,其纹波也是一个很头疼的问题。

b、电流

嵌入式系统的正常运行不但需要稳定足够的电源,还要有足够的电流,因此在选择电源器件的时候需要考虑其负载,我设计时一般留有30%的余量。

如果是多层板,电源部分在layout的时候需电源分割,这时需要注意分割路径,尽量将一定量的电源放置在一起。如果是双面板,则走线宽度需要注意,在板子允许的情况下尽量加宽。合适的退耦电容尽量靠近电源管脚。

滤波、接地、屏蔽、PCB布局四大视角看EMC设计

电磁干扰的主要方式是传导干扰、辐射干扰、共阻抗耦合和感应耦合。对这几种途径产生的干扰我们应采用的相应对策:传导采取滤波,辐射干扰采用屏蔽和接地等措施,就能够大大提高产品的抵抗电磁干扰的能力,也可以有效的降低对外界的电磁干扰。本文从滤波设计、接地设计、屏蔽设计和PCB布局布线技巧四个角度,介绍EMC的设计技巧。

一、EMC滤波设计技巧

EMC设计中的滤波器通常指由L,C构成的低通滤波器。滤波器结构的选择是由"最大不匹配原则"决定的。即在任何滤波器中,电容两端存在高阻抗,电感两端存在低阻抗。图1是利用最大不匹配原则得到的滤波器的结构与ZS和ZL的配合关系,每种情形给出了2种结构及相应的衰减斜率(n表示滤波器中电容元件和电感元件的总数)。

可别看了PCB电路板上不起眼的小孔,没了它可能整个板子都报废~

过孔简介

过孔(via)是多层 PCB 的重要组成部分之一,钻孔的费用通常占 PCB 制板费用的 30%~40%。简单的来说,PCB 上的每一个孔都可以称之为过孔。

从作用上看,过孔可以分成两类:

  • 用作各层间的电气连接;

  • 用作器件的固定或定位;

如果从工艺制程上来说,这些过孔一般又分为三类:

  • 盲孔(blind via)

  • 埋孔 (buried via)

  • 通孔(through via)

盲孔

位于印刷线路板的顶层和底层表面,具有一定深度,用于表层线路和下面的内层线路的连接,孔的深度通常不超过一定的比率(孔径)。

埋孔

是指位于印刷线路板内层的连接孔,它不会延伸到线路板的表面。上述两类孔都位于线路板的内层,层压前利用通孔成型工艺完成,在过孔形成过程中可能还会重叠做好几个内层。

通孔

五张图看懂EMI电磁干扰的传播过程

电磁干扰是电子电路设计过程中最常见的问题,设计师们一直在寻找能够完全消除或降低电磁干扰,也就是EMI的方法。但想要完全的消除EMI的干扰,首先需要的就是了解EMI是什么,它的传播过程是怎样的,本文就将对EMI的传播过程进行一个大致的介绍。

EMI是电磁干扰的统称,但实际上电磁干扰分为两种,一种是传导干扰,另一种是辐射干扰。传导干扰主要是电子设备产生的干扰信号是通过导线或公共电源线进行传输,互相产生干扰。进一步细分,传导干扰又分共模干扰和差模干扰。

**EMI的传播过程 **

“”

EMI的传播过程主要途经三个部分,干扰源、干扰途径、接收器。对于开关电源来说,最后一部分是不需要考虑的,干扰源也不能消灭,因为它也是开关电源之所以能工作的源头,但是可以通过软开关、加缓冲等方式来使干扰源的干扰小一些。控制干扰途径是降低开关电源EMI的重要一环,也是本文的重点。

信号源波形产生的频谱

开关电源与IC控制器的PCB设计分析

01、前言

我们电子产品往往60%以上-可靠性方面的问题都出现在电子线路板的PCB设计上;工作及性能良好的PCB需要相关的理论及实践经验;我在产品的设计实践中经常碰到各种各样的问题;比如电子线路板不能通过系统EMS的测试标准,测试关键器件IC的功能引脚时出现高频噪声的问题,电路功能IC引脚检测到干扰噪声进行异常保护等等。通过不断的理论与实践结合;用实战检验我们的理论和实践的差异点!优良的设计跟长期的经验总结是密不可分的!!

我分享一下开关电源与IC控制器PCB设计思路给电子设计爱好者参考。

02、开关电源通过以下的原理示意图分享设计总体原则

“”

图示为我们常用的两种开关电源的拓扑结构。

A.开关电源拓扑主电流回流路径面积最小化;驱动脉冲电流回路最小化。

B.对于隔离开关电源拓扑结构,电流回路被变压器隔离成两个或多个回路(原边和副边),电流回路要分开最小回流面积布局布线设计。

PCIE-PCB设计规范!(建议收藏)

PCI-Express(peripheral component interconnect express)是一种高速串行计算机扩展总线标准,它原来的名称为“3GIO”,是由英特尔在2001年提出的,旨在替代旧的PCI,PCI-X和AGP总线标准。

PCIe属于高速串行点对点双通道高带宽传输,所连接的设备分配独享通道带宽,不共享总线带宽,主要支持主动电源管理,错误报告,端对端的可靠性传输,热插拔以及服务质量(QOS)等功能

下面是关于PCIE PCB设计的规范:

1、从金手指边缘到PCIE芯片管脚的走线长度应限制在4英寸(约100MM)以内。

2、PCIE的PERP/N,PETP/N,PECKP/N是三个差分对线,注意保护(差分对之间的距离、差分对和所有非PCIE信号的距离是20MIL,以减少有害串扰的影响和电磁干扰(EMI)的影响。芯片及PCIE信号线反面避免高频信号线,最好全GND)。

3、差分对中2条走线的长度差最多5MIL。2条走线的每一部分都要求长度匹配。差分线的线宽7MIL,差分对中2条走线的间距是7MIL。

物联网产品设计中Wi-Fi连接的四个关键因素

Wi-Fi连接的好与坏,对物联网产品的使用体验会产生天上、地下的差别。优质的Wi-Fi连接,主要取决于四个因素:通信距离长,吞吐量大,数据包错误率低,具备适当的共存能力。而这一切都可以通过802.11ac来增强,本文为您详细解读。

在物联网(IoT)发展势头的推动下,我们过去从未想过可以联网的设备今天正在实现互联。现在煮咖啡也不必您亲自走到咖啡机前,您只需用自己的手机给咖啡机发一条命令即可。咖啡机甚至可以了解您的喜好,每次都按照您的喜好准备咖啡。

互联设备及用户的数量在不停地快速增长。这真是件好事!然而,要实现物联网基础设施的可持续发展,物联网设备必须能在任意环境中运行自如。无法连接到本地接入点(AP)的物联网设备毫无用处。在设计物联网产品时,系统设计人员需要理解各种Wi-Fi参数,例如传输功率、接收灵敏度、共存能力以及吞吐量。本文将介绍成功的物联网产品应具备的一些重要特征。

2.4GHz频段拥挤不堪

最会画板的人,一定懂这些技巧!

电子技术的发展变化必然给板级设计带来许多新问题和新挑战。首先,由于高密度引脚及引脚尺寸日趋物理极限,导致低的布通率;其次,由于系统时钟频率的提高,引起的时序及信号完整性问题;第三,工程师希望能在PC平台上用更好的工具完成复杂的高性能的设计。由此,我们不难看出,PCB板设计有以下三种趋势:-高速数字电路(即高时钟频率及快速边沿速率)的设计成为主流。

——产品小型化及高性能必须面对在同一块PCB板上由于混合信号设计技术(即数字、模拟及射频混合设计)所带来的分布效应问题。

设计难度的提高,导致传统的设计流程及设计方法,以及PC上的CAD工具很难胜任当前的技术挑战。以下介绍高速设计中使用的技巧。

一、高频电路布线技巧

1)高频电路往往集成度较高,布线密度大,采用多层板既是布线所必须的,也是降低干扰的有效手段。

2)高频电路器件管脚间的引线弯折越少越好。高频电路布线的引线最好采用全直线,需要转折,可用45°折线或圆弧转折,这种要求在低频电路中仅仅用于提高铜箔的固着强度,而在高频电路中,满足这一要求却可以减少高频信号对外的发射和相互间的耦合。

3)高频电路器件管脚的引线越短越好。

单片机系统EMC测试和故障排除

对于从事单片机应用系统(软硬件)设计的工程技术人员来说,掌握一定的EMC测试技术是十分必要的。

一、关于EMC

EMC:Electromagnetic Compatibility,即电磁兼容性。指设备或系统在其电磁环境中符合要求运行并不对其环境中的任何设备产生无法忍受的电磁骚扰的能力。

它包括电磁干扰(EMI)和电磁敏感性(EMS)两部分。由于电器产品在使用时对其它电器有电磁干扰,或受到其它电器的电磁干扰,它不仅关系到产品工作的可靠性和安全性,还可能影响其它电器的正常工作,甚至导致安全危险。

二、EMC测试两大内容

1.对其向外界发送的电磁骚扰强度进行测试,以便确认是否符合有关标准规定的限制值要求;

2.对其在规定电磁骚扰强度的电磁环境条件下进行敏感度测试,以便确认是否符合有关标准规定的抗扰度要求。

三、单片机系统EMC测试

1.测试环境

为了保证测试结果的准确和可靠性,电磁兼容性测量对测试环境有较高的要求,测量场地有室外开阔场地、屏蔽室或电波暗室等。

2.测试设备

防护电路中的元器件

随着社会的不断进步,物联网的发展,电子产品的室外应用场景,持续高增长,电子产品得到了极其广泛的应用,无论是公共事业,还是商用或者民用,已经深入到各个领域,这也造成了产品功能的多样化、应用环境的复杂化。随着产品功能越来越多,其功能接口也越来越丰富,比如:网络接口(带POE功能)、模拟视频接口、音频接口、报警接口、RS485接口、RS232接口等等。功能在不断地增多,但是对于产品的体积要求越来越小,在增加设计难度的同时也会使产品面临着更多的威胁,比如雨季随着雷电的增多,产品批量的损坏;冬季设备安装调试时,由于静电造成设备的功能异常等等。本文着重介绍常用防护器件在产品中的基本应用,通过防护电路来提高产品抗静电、抗浪涌干扰的能力,从而提高产品的稳定性。

通信产品在应用的过程中,由于雷击等原因形成的过电压和过电流会对设备端口造成损害,因此应当设计相应的防护电路,各个端口根据其产品族类、网络地位、目标市场、应用环境、信号类型以及实现成本等多种因素的不同所对应的防护电路也不同。

1、气体放电管