cathy的博客

开关稳压器连载(4):同步整流型和异步整流型的区别

DC/DC转换器的非绝缘型降压开关稳压器有前项所说明的异步整流(二极管)式和同步整流式。异步整流式是较早被使用的方式,就开关稳压器而言电路简单但效率却超过80%左右。其后,笔记本电脑等电池驱动且需要较大功率的应用开始要求更高效率,于是可获得高效率的同步整流式开关稳压器用IC被陆续开发,控制或电路极为复杂的同步整流式变得容易设计,逐渐成为主流。同步整流式最大可以获得近95%的效率。

图39和40是两种方式的电路概述和工作。

PCB设计中,这些问题千万不要犯!

一、避免过孔via紧挨着SMT焊盘

如果未盖油塞孔的via,在layout时将过孔打的过于靠近SMT器件的焊盘,将会造成SMT器件在过回流焊时,流动的焊锡通过该过孔流到PCB的另一面,造成SMT焊料不足而虚焊等问题。通常建议,via过孔的边缘距离SMT焊盘边缘距离在25mil以上,并且via过孔做盖油处理。

二、不要将比SMT焊盘宽的线直接拉入焊盘

如果导线比焊盘大,由于SMT焊盘的开窗区域一般会比pad尺寸外扩一些,这就使得原本SMT的pad开窗露铜部分会往导线上扩展,而SMT的钢网是按照pad的尺寸来开窗的,样会使得回流焊时pad上的锡膏量稍微不够,会有虚焊的风险。此外,使用比pad等大或者比pad略小的导线,也避免了焊接时热量散失过快的问题。

三、走线请勿沿着SMT焊盘边缘平行进入焊盘

如何扩展共射级放大电路的幅频特性

下面我们将主要讨论共射级放大电路

放大电路就是把小信号放大为大信号。如下图所示,晶体管有三个端子,分别是集电极、基极、发射极。其中基极为输入,集电极为输出,发射级为公用地。因此我们称之为共发射极放大电路。

“三极管放大电路”
三极管放大电路

同时上图,也给出了三极管的静态工作点,各处的电压值。

下面我们来算一下此电路交流电压的放大倍数

由于基极-发射极之间存在的二极管是在导通的情况下使用的(交流电组为0),所以基极的交流电位(*Vi)直接出现在发射极。因此,由交流电输入电压(Vi)引起的交流电流变化为(*Ii),其中*Ii=*Vi/Re。

另外,令集电极电流变化为*Ic,由*Ic引起的集电极交流电压变化为*Vc=*IcRc。

进而我们认为集电极电流等于发射极电流。那么*Vc=*IcRc=*IiRc=*ViRc/Re

开关稳压器连载(3):降压型开关稳压器的工作原理

前项中已经说明开关稳压器可以进行等降压、升堥、升降压、反转等转换,现在接着以最广泛利用的降压型开关稳压器为例说明工作原理。

图31是降压DC/DC转换的概略电路,是借着开关将DC电压VIN做时间分割后以电感和电容器使其平滑化来转换成所希望的DC电压。

开关稳压器连载(2):优点和缺点、与线性稳压器的比较

开始电源设计时,如果大概的规格已定,其次便是进入选择开关稳压器或线性稳压器的作业。为满足要求规格虽然有的情况必须选择其一,不过两者皆可的例子也不少。此时,须以各自的特征和优缺点为主进行探讨。图29为开关稳压器的优点和缺点,而图30则试着与线性稳压器做总比较。

最大的优点,是可以自由转换。虽然降压最常被利用,不过也可从电池等低电压升压、使其从正电压反转来制作负电压、或3.3V般输入跨越输出电压时也可从锂离子二次电池(例:4.2V~2.8V)升压。

其次,是效率高。虽然也视种类而定,不过最大效率可达95%左右。但是,开关稳压器的效率因负载电流的大小而变。基本上,负载电流变小时效率会大幅度下滑。对此,近年待机功耗降低要求日趋严格,成了开关稳压器的课题。

关于二极管的内容,你想了解的都在这儿了!

二极管又称晶体二极管,简称二极管。电子元件当中,一种具有两个电极的装置,只允许电流由单一方向流过,许多的使用是应用其整流的功能。二极管最普遍的功能就是只允许电流由单一方向通过(称为顺向偏压),反向时阻断 (称为逆向偏压)。因此,二极管可以想成电子版的逆止阀。在半导体硅或锗中一部分区域掺入微量的三价元素硼使之成为P型,另一部分区域掺入微量的五价元素磷使之成为N型半导体。在P型和N型半导体的交界处就形成一个PN结。一个PN结就是一个二极管,P区的引线称为阳极,N区的引线称为阴极。

作用

二极管是最常用的电子元件之一,他最大的特性就是单向导电,也就是电流只可以从二极管的一个方向流过,二极管的作用有整流电路,检波电路,稳压电路,各种调制电路,主要都是由二极管来构成的,其原理都很简单,正是由于二极管等元件的发明,才有我们现在丰富多彩的电子信息世界的诞生,既然二极管的作用这么大那么我们应该如何去检测这个元件呢,其实很简单只要用万用表打到电阻档测量一下正向电阻如果很小,反相电阻如果很大这就说明这个二极管是好的。对于这样的基础元件我们应牢牢掌握住他的作用原理以及基本电路,这样才能为以后的电子技术学习打下良好的基础。

分类

开关稳压器连载(1):种类有哪些?

开关稳压器

近年来,开关稳压器由于其功率转换效率高或转换可调性而被许多设备所利用,成为电源的主流。过去,一说到开关电源便想到购买模块或单元等成品,近年来,则可提供多种多样的开关电源用IC,使设计者得以致力于电路基板上编入开关电源的on-board设计。但同时,与线性稳压器不同的开关电源电路所拥有的各种探讨事项将成为设计者的一大课题也是不争的事实。

本项将以降压型开关稳压器为题材来说明其工作或功能等基础。

开关稳压器的种类

开关稳压器有许多种类,分类方法也视其观点而各有不同。在这里,姑且从输入电源的种类开始,以电路方式进行主要分类。首先,输入电源可以利用DC(直流)或AC(交流)分成DC/DC转换器和AC/DC转换器(参考图27)。这里记载的“DC/DC转换器”表示以输入电源身分将DC电压转换成DC电压后输出,而“AC/DC转换器”则表示以AC输入转换成DC电压。

集成式射频采样收发器支持快速跳频、多频带和多模式操作

作者:德州仪器高速数据转换器应用经理Matthias Feulner

最新的直接无线射频(RF) - 采样收发器 – 包括德州仪器的AFE7444和AFE7422设备,分别支持四个和两个天线信道 – 提供多种强大功能,使得多种先进的系统特性,如多频带和多模式操作,以及变频和快速跳频成为可能。这些功能从系统概念来看变得日益普及,如多功能阵列,大型相控阵天线的不同子阵列可配置为根据情况或任务需要而执行多种功能;这包括雷达、通信或电子战(EW)功能,如图1所示。

“图
图 1 多功能相控阵列系统

此外,这些系统常常需要实现快速跳频,以便通过重复或任意的序列逐渐调整到工作频率,如图 2所示。如此执行可以避免人为干扰、防范信号探测或便于实施防电子欺骗技术(电子欺骗:篡改雷达反射信号的电子签名)。

低频噪声和高频噪声分别选择大电容还是小电容?

关于这个问题,我们要现结合电容的阻抗频率特性曲线去理解!

“电容的阻抗频率特性曲线”
电容的阻抗频率特性曲线

从上面的阻抗频率特性曲线可以看出

若只考虑电容分量的情况下,这种认为是正确的。

因为电容分量越大,谐振点频率越低,其越适合滤除低频噪声。电容分量越小,谐振点频率越高,其越适合滤除高频噪声。

如果只考虑电容分量的情况下,相同封装下的不同容值的电容的阻抗特性曲线是什么样的呢?

“电容分量越大,谐振点频率越低”
电容分量越大,谐振点频率越低

但是如果考虑ESL分量,上图就需要做出修正,如下图。

线性稳压器连载(4):优缺点是什么?效率和热计算?

线性稳压器的最大优点在于使用简单。由于输入和输出各只附1个电容器工作,实质上或许可以说不需要设计。换句话说,散热设计或许比电路设计麻烦(参考热计算1-6)项)。此外,因为没有开关电源般的开关噪声,纹波抑制特性或电压噪声本身也小,所以在例如AV、通讯、医疗、测量等必须排除噪声的应用上较受欢迎。

“图
图 7:应用例

缺点在于输出输入的电压差大则损耗就大,损耗几乎完全变为热能,某些条件下发热会非常大。如果使用功率达几瓦以上等级,就必须常常面对发热的问题。此外,线性稳压器只能降压。负电压用的情况虽也相同,不过负电压经常被混淆,在此加以说明。负电压用线性稳压器,例如输入功率为-5V时,无法输出更低的-12V。由于电位从-5V降至-12V,电压从-5V朝-12V的负方向増加,故会朝负方向升压。因此,可以做到的是以输入-12V达到输出-5V。