cathy的博客

提升电磁兼容性的软件策略:EMC不只是硬件工程师的锅

EMC( Electromagnetic Compatibility) 电磁兼容性对于一个产品而言是一个非常重要的性能指标,一个产品遇到EMC的坑,很多测试很难通过,很多软件同学可能会觉得EMC更多的是硬件攻城师要去应对的难题,与软件没毛关系。

个人认为这是一个不正确的认知,应该说EMC是一个系统性的综合性能指标。它与硬件设计、软件设计、机械结构设计都息息相关。本文就从软件编程的角度来分享一下个人的一些看法。

EMC是什么鬼?

电磁兼容性(EMC)是通过限制无意间产生、传播和接收电磁能量的电气设备和系统在其电磁环境中正常工作的能力。这些电磁能量可能会导致不必要的影响,例如电磁干扰(EMI:Electromagnetic Interference)甚至物理损坏、 设备功能异常、功能安全、人身财产安全等。

有这么严重吗?举个极端的例子,比如一个病人身上植入了心脏起搏器,他走到一个强干扰的环境中,外界的电磁干扰通过空间电磁波方式耦合进了心脏起搏器,心脏起搏器没扛住,然后就悲剧了。那么这样一个案例,就可以一体两面的来分析,干扰源从何而来?起搏器为啥没扛住?干扰咋进去的呢?.....

EMC研究三类主要问题:

常见类型ADC原理探秘,选型必知

上文总结了主要常见的重要ADC的技术指标,本文来梳理两个方面的内容,常见的ADC类型及原理,以及可能容易掉进去的坑。

谈谈我为什么整理这个文章吧,工程师往往关注点更多在于功能,而忽略了性能。为什么会忽略性能呢?因为可能缺少对于原理的深入探究,那么使用时可能失之毫厘,谬以千里。性能往往不好,稳定性也可能不佳。帽子扣大点说是缺少匠心,其实这也是大学教育非常不足的地方。而我个人的观点是,即使是工程师也需要一点科学家的素养,希望小伙伴们都尽可能的将一些技术要点的本原深挖,不要浮于表面。这也是国内科技领域现今急需要去发展提升的地方,如果每个技术领域的我辈中人,都能深耕自己的领域,探求技术的本原,又何惧美帝如此猖狂嚣张!

ADC类型

积分型ADC

优点

PCB设计中的20个规则!

1、3W规则

为了减少线间串扰,应保证线间距足够大,当线中心间距不少于3倍线宽时,则可保持70%的电场不互相干扰,称为3W规则,使用10W的间距时,可以达到98%的电场不互相干扰。

“”

2、20H规则

由于电源层与地层之间的电场是变化的,在板的边缘会向外辐射电磁干扰,称为边沿效应。

解决的办法是将电源层内缩,使得电场只在接地层的范围内传导。以一个H(电源和地之间的介质厚度)为单位,若内缩20H则可以将70%的电场限制在接地层边沿内;内缩100H则可以将98%的电场限制在内。

“”

3、五–五规则

单片机中的几种通信方式,你都了解吗?

USART,RS232,RS485,IIC,SPI

基本概念:

串口、COM口是指的物理接口形式(硬件)。而TTL、RS-232、RS-485是指的电平标准(电信号)

TTL:TTL电平信号之所以被广泛使用,原因是:通常我们采用二进制来表示数据。而且规定,+5V等价于逻辑“1”,0V等价于逻辑“0”。这样的数据通信及电平规定方式,被称做TTL(晶体管-晶体管逻辑电平)信号系统。

UART,是通用异步收发传输器(Universal Asynchronous Receiver/Transmitter),既然是“器”,显然,它就是个设备而已,要完成一个特定的功能的硬件,它本身并不是协议。那么它要完成什么功能呢?它的最基本功能,是串行数据和并行数据之间的转换。我们知道,计算机中的数据以Byte为基本单位,对一个Byte的存取是并行的,即,同时取得/写入8个bit。而串行通信,需要把这个Byte“打碎”,按照时间顺序来收发以实现串行。

如何通过遵循正确的设计规范来避免EMC故障?

设计人员在设计产品时必须考虑许多工程选择。从组件选择到机壳决定,产品的设计和构造都需要花费大量时间和精力。然而,设计师特别需要关注的是他们的产品在最终测试阶段的表现如何。

“”

测试阶段最关键的部分之一是电磁兼容性(EMC)。EMC测试从本质上衡量产品中的两件事:其在预期环境中按预期运行的能力(抗扰度测试),以及设备对附近运行的其他设备造成有害干扰的可能性(排放测试)。

抗扰度测试可衡量设备在暴露于各种形式的电磁干扰或现象时如何反应,而排放测试则可测量设备产生的电磁(传导和辐射)能量。

两者都是设计人员在设计阶段必须考虑的极其重要的方面。如果控制不当,则会导致电磁不兼容对周围环境造成负面影响,从而导致产品故障,违反安全协议,丢失数据等。

避免失败的EMC合规性测试仅涉及在设计和制造过程中使用基本设计规则。为避免代价高昂的EMC测试失败,我们列出了设计未通过EMC测试的一些最常见原因,为什么会出现这些失败以及如何通过适当的设计实践来避免它们:

模数采样知多少

生活环境周围信号万万千,对于一个嵌入式er。我们利用技术去了解世界、改变世界。而一个产品要与外界物理环境打交道,一个至关重要的触角就是采样真实模拟世界的信号,翻译成芯片可理解的数字信号,进而实现很多为人服务的应用产品。那么提到采样,ADC技术你绕不开,今天总结分享一下ADC的点点滴滴。
啥是ADC

在现代电子工业技术中,模数转换器(ADC, A/D,或A-to-D)是一种将模拟信号转换成数字信号的系统。ADC还可以提供隔离的测量,例如将输入模拟电压或电流转换为表示电压或电流大小的数字的电子设备。通常情况下,数字输出是一个与输入成比例的二进制补码,但也有其他的可能性。举些栗子:

STM32编程:是时候深入理解栈了

为什么要深入理解栈?做C语言开发如果栈设置不合理或者使用不对,栈就会溢出,溢出就会遇到无法预测乱飞现象。所以对栈的深入理解是非常重要的。

注:动画如果看不清楚可以电脑看更清晰。

啥是栈

先来看一段动画:

没有比这个更直观的啦,栈是一种受限的数据结构模型,其数据总是只能在顶部追加,利用一个指针进行索引,顶端叫栈顶,相对的一端底部称为栈底。栈是一种LIFO后入先出的数据结构。

栈就两种操作:

  • PUSH,压栈,向栈内加入数据,
  • POP,出栈

再进一步探讨:

首先将栈与堆分清,从看到这篇文章开始,我建议你不要把堆和栈连在一起叫,栈是栈,堆是堆,这是两回事,别混为一谈!(堆本文不深入讨论)

你们习惯了阻抗有问题就找板厂了吧?

公众号:高速先生(作者:黄刚)

在硬件工程师和PCB工程师的潜意识里,只要是PCB走线阻抗出现了偏差,第一时间就会去和板厂的朋友们去喝喝茶聊聊天。这个时候高速先生悄悄的告诉你们,在对板厂的阻抗加工提出质疑之前,有没有稍微想过一下下有可能是设计的问题呢?

一般来说,单纯PCB走线的阻抗控制出了问题,的确十有八九是由于板厂对加工管控或者参数调整出现偏差,导致加工出来的走线超过了误差范围。因为板厂的确需要对走线阻抗进行一定范围的保证,例如±10%甚至±8%。高速先生一度也是这么认为,直到遇到了下面这个由客户自己进行PCB设计然后我司来制板的项目…

今年的某一天,我们一个客户拿着我们加工的板子过来,就开始抱怨说我们板厂加工的阻抗超过了10%的偏差。50欧姆的表层走线他们自己进行阻抗测试时,发现最低的地方只有44欧姆。还给出了他们的“证据”,也就是实测的阻抗结果。

CCM与DCM模式到底有什么区别?

今天有个小伙伴留言说不明白CCM和DCM之间的区别,要如何区分这两种模式,我之前在网络上有看到一份关于CCM和DCM这两者之间的判别及分析的材料,个人感觉讲的还是比较到位的,所以分享出来,希望对留言的小伙伴有所帮助。

CCM又称为连续导通模式,顾名思义就在在一个开关周期内,电感的电流是连续的,电流不会归0,如果按照专业的将就是电感从不 “复位”。

DCM被称为非连续导通模式,就是在开关周期内,电感电流总会回归到0,也就是电感会被 “复位”。

这两种模式在波形上有明显的区别:

在变压器的初级电流,CCM模式波形为梯形波,而DCM模式是三角波。

在变压器的次级整流管波形上,CCM同样为梯形,而DCM则为三角波。

具体波形如下图所示:

散热过孔(二):过孔孔径

使用同等规格的过孔时,过孔的密度越大带来的散热效果就越好,这一点在之前的实验中已经证实。

现在我们要验证另外一种情况,如果过孔的孔径增加是否会进一步改善散热效果?

这次实验与上次一致,在长宽均为50mm的PCB板正中放置一个QFN封装的器件,这个器件是主要的热源。我们将在QFN的散热焊盘上放置不同规格的过孔阵列,验证散热效果。

“”

第一种情况:过孔规格V16D8(焊环直径16mil,孔直径8mil),在器件的散热焊盘上一共放置了64个过孔。

“”

第二种情况:仅将过孔规格调整为V22D12,孔间距不变。