cathy的博客

DC/DC降压型变换器的接地反弹讲解

作者:袁韶庚

DC/DC降压型电路在日常的电路设计中经常遇到,这些电路的接地节点会聚快速变化的大电流。当接地节点移动时,系统性能会遭受影响并且该系统会辐射电磁干扰(EMI)。但是如果很好地理解“接地“引起的接地噪声的物理本质可提供一种减小接地噪声问题的直观认识。

在高频时,一个大电容器——例如降压型变换器输入电容器,CVIN——可以看作一个DC电压源。类似地,一个大电感器——例如降压型变换器输出电感器,LBUCK——也可以看作一个DC电流源。所做的这些近似有助于直观理解。

“”

图2示出当开关在两个位置之间交替切换时磁通量如何变化。

如何让QFN焊接爬锡高度达到50%以上?

高速先生(作者:曾晓华、王辉东)

【序】

QFN器件侧边裸铜焊盘、SMT焊接后侧边pad为什么不爬锡或爬锡高度达不到IPC里面的标准要求,这是一个令人纠结和头疼的问题。要怎么解决这个问题呢,今天我们就来聊聊这个QFN侧边焊盘不爬锡、带来焊盘接触性虚焊、假焊、功能测试不稳定等潜在隐患,且听高速先生娓娓道来。

【正文】

远程患者监护系统面临的五大设计挑战

可穿戴式患者监护仪市场发展迅速。远程患者监护仪帮助医生实时监护患者,由此可预见医疗保健领域物联网的未来。

远程患者监护系统为患者和医生节省了时间,可在门诊的基础上提供患者的关键信息。患者移动性也已成为趋势,通过与无线网络的安全连接,远程患者监护仪可缩短患者就诊时间并避免过多电缆的干扰。如今的可穿戴医疗产品不仅可以测量生命体征,而且还可用作个人应急系统。由于这是一种复杂的终端设备,致使患者监护仪将面临五大常见的主要设计挑战:功耗(或电池寿命)、便携性(或大小)、患者安全、数据安全传送和集成。

图1所示为可穿戴式患者监护仪的高级框图,重点介绍了电池管理、非隔离式DC/DC电源、隔离和无线接口等子系统。

“图1:可穿戴式患者监护仪的高级框图"
图1:可穿戴式患者监护仪的高级框图

下文将为您讲述设计可穿戴式患者监护仪时面临的五大挑战及解决措施:

电池寿命

EMC 时钟设计之十大规则

1、前言

EMC问题是电子工程师在研发设计时遇到的最大挑战,由于EMC的设计经验较少,经常在设计完成之后才进行 EMC 的测试,一旦测试发现问题,会出现产品准备上市销售了,EMC 的问题总是没有时间来解决,项目总是要不断的延迟,需要再花费大量的时间去解决,相信这是每位遇到 EMC 问题的研发人员的深刻体会。所以解决 EMC 的问题应该在产品研发的过程之中予以解决,而不是在产品研发完成之后再进行修补,在设计中应遵循一些 EMC 的设计规则,项目团队对电路设计和 PCB 设计 进行评审,并在每个研发阶段应进行相应的 EMC工程测试,以发现潜在的问题。

时钟EMC一直是EMC中比较难解决的问题,下面和大家分享一下时钟在设计阶段的十大规则。

2、时钟源外壳接地

“”

在PCB板上晶体外壳应该接地处理 。

电感饱和是怎么一回事?

“电感饱和”这个我一直听到的词汇竟然是如此陌生——我不知道它到底意味着什么,除了电流弯曲失真,烧坏器件这些表象,在物理上“饱和”到底是什么意思?

感值,耐温,饱和电流,尺寸,价格,这五个是我们电感选型的基本坐标系,当然我们还会考虑线圈和磁心的形态,磁材,安装焊接方式。选型过程中最恼火的无过于在数十个电感中找到合适的,却发现其中一个参数不满足要求,或者仅仅因为发生概率极低的峰值功率而导致的饱和电流不足而带来过大的设计裕量。

感性的秘密

电感之所以呈现感性,即流过电感的电流会滞后于施加在电感上的电流(事实上是滞后90度相角),是因为楞次定律,电感就像熊孩子抓住家里的宠物,阻碍宠物的前进(电流的变化),你得给熊孩子一些压力,他先会不大情愿,然后再让宠物(电流)走一下(我们充分利用了这个不听话的特性来实现我们扼流Choke的目的);电感又像一个弹簧,当你施加压力的时候,它把一部分能量存在自己体内,剩下的一部分能量传输出去,当弹簧被压缩到极限时,它没办法再存储更多的能量了,即发生饱和,所有增加的能量都被悉数传递出去,电感失去了它的滞后作用。

在物理上弹簧这个例子或许更加恰当,就像下面这段我在网上找到的教科书般的答案:

博文分享一:Dialog开发板开箱评测

端午节参加了芯快递和贸泽工程师社区联合举办的抽奖活动,很幸运获得了Dialog DA14681-01A9DEVKT-B开发板,6月28号提交的申请,7月3号发货,5号收到开发板,整体效率很高,给活动举办方的工作人员手动点赞。

开箱实物照片

快递选用的顺丰,包邮直达。收货后的外包装盒如下:

“”

开箱的照片:

“”

里面主要包括:说明书、开发板、micro-USB线以及一颗纽扣电池。开发板使用的是防静电包装袋。

如何避免和消除自激振荡?(下)

自激振荡像得病一样,重在防御。可从以下方面入手。

1)设计 PCB 时,尽量减小杂散电容,特别是CIN-。下图进行说明:

“”

同一层的两个相邻节点间。比如某根信号线,和周边的覆铜 GND 之间,以及和周边的焊点之间有杂散电容C1;

不同层上下之间。比如元件层的线,和焊接层的大面积 GND 之间,如图中 C2;

一般的,杂散电容可以达到 pF 数量级。这是不可忽视的。这些杂散电容和电路中的电阻,很容易形成低通网络,有可能引起电路稳定性下降。

电路举例,如下图:

“”

设计一个同相比例器,做成实际电路板后,就出现了三个杂散电容:CIN+、CIN-、COUT

自激振荡原因分析(上)

你是否遇到过这样的情况:在KTV唱歌时,当麦克风位置不合适或者音量过大时,喇叭中会出现一种非常难听的啸叫,捂住麦克风、赶紧降低功放音量、或者将麦克风转个方向,都是我们常用的解决方法。这个难听的啸叫,其实就是放大器的自激振荡。

理论上说,自激振荡是指当放大器加电后,还没有加载输入信号,输出端就出现了高频的类似于正弦波一样的波形。

实际中,还有另外一种情况,也属于自激振荡。当输入某些信号时,输出是正常的,一旦改变输入信号幅度或者频率到某些特定值,输出波形在原基础上会叠加更高频率的振荡信号。

自激振荡的条件有以下两点:

1.假设运放的附加相移为 φ A ,反馈网络的附加相移为 φ F ,当φ A +φ F =-180°,原本的负反馈,就会演变成正反馈。如下示意图:

“”

2.整个环路增益必须大于1,才能使得很微小的信号一旦在环路中产生,就会越来越大。

万变不离其宗之单片机串口共性问题

[导读] 单片机开发串口是应用最为广泛的通信接口,也是最为简单的通信接口之一,但是其中的一些要点你是否明了呢?来看看本人对串口的一些总结,当然这个总结并不能面面俱到,只是将个人认为具有共性以及相对比较重要的点做了些梳理。

啥是串口?

首先这玩意儿分两种:

  • 通用异步收发器(UART)是用于异步串行通信的一种物理层标准,其中数据格式和传输速度是可配置的。
  • 通用同步收发器(USART)是一种串行接口设备,可以对其进行编程以进行异步同步通信。

数据格式

“”

线上空闲、无数据状态为常高电平,故逻辑低定义为起始位。

现实中的电源抑制比(PSRR) - 第四部分

继续我们有关低压降稳压器(LDO) PSRR的系列文章,请查看我们以前的博客以回顾-什么是PSRR? -第三部分和第四部分一样,我们将继续讲解LDO的行为及其有趣的参数。在当前的文章中,我们将从实际的角度关注电源抑制比(PSRR)。它可帮助将数据表编号与示波器测量值连接起来。

首先,必须说的是,在每个电子系统中(即使只有线性稳压器),如果存在多个负载点,则可能会产生输出电压纹波,并可能影响其他部件。因此,让我们在实际测量中讲解PSRR。

数据表上显示的PSRR是测量的输入和输出电压纹波之间的比率。如果牢记一些规则,则测量本身相对简单。低压降(LDO)稳压器应由干净的直流电源供电,带有耦合的正弦波纹波电压。输出负载应严格电阻,以防止电子负载与LDO稳压器之间互相影响。必须谨慎选择纹波电压幅值,以使LDO保持稳定并具有足够的电压裕量。例如,当VIN = 3.6 V和VOUT = 3.3 V时,AC信号的幅值不能为300 mV,因为LDO处于压差状态,只是将输入纹波传递到输出。