cathy的博客

连载二:使用二极管并联LDO

上一篇文章中,提到了有两种并联LDO的方法。本文中将介绍第一种方法:使用二极管并联LDO的方法。

使用二极管并联LDO

首先来看通过二极管并联LDO的电路图。采用二极管并联LDO连接方法,由于输出路径中有二极管,因此输出电压仅下降二极管正向电压(以下简称“VF”)的量。所以,要想得到预期的输出电压,需要采取诸如将二极管VF添加到LDO的输出电压设置值中等措施。另外,每个二极管的VF会有个体波动,而且还会因负载电流和温度而异,因此,无法期待精确的输出电压精度。

好文分享 | 一文了解ADC的参数释义

01、ADC参数释义

1.分辩率(Resolution) 指数字量变化一个最小量时模拟信号的变化量,定义为满刻度与2n的比值。分辩率又称精度,通常以数字信号的位数来表示。

2.转换速率(Conversion Rate)是指完成一次从模拟转换到数字的AD转换所需的时间的倒数。

积分型AD的转换时间是毫秒级属低速AD,逐次比较型AD是微秒级属中速AD,全并行/串并行型AD可达到纳秒级。采样时间则是另外一个概念,是指两次转换的间隔。为了保证转换的正确完成,采样速率(Sample Rate)必须小于或等于转换速率。因此有人习惯上将转换速率在数值上等同于采样速率也是可以接受的。常用单位是ksps 和Msps,表示每秒采样千/百万次(kilo/Million Samples per Second。

3. 量化误差(Quantizing Error)由于AD的有限分辩率而引起的误差,即有限分辩率AD的阶梯状转移特性曲线与无限分辩率AD (理想AD)的转移特性曲线(直线)之间的最大偏差。通常是1个或半个最小数字量的模拟变化量,表示为1LSB、 1/2LSB。

4.偏移误差(Offset Error)输入信号为零时输出信号不为零的值,可外接电位器调至最小。

连载一:什么是LDO线性稳压器的并联?

LDO线性稳压器是线性降压型电压稳压器中的低饱和(Low Dropout:LDO)型产品,通常被称为“LDO”,是目前线性稳压器的主流产品。由于设计简单,并且在部件数量、尺寸、成本方面具有诸多优势,因此,即使在近年来开关稳压器的应用日益增多的情况下,LDO线性稳压器依然是根据应用需求被广为采用的电源IC。

普通LDO线性稳压器的容许损耗最多几瓦,比如5V输入3.3V输出时,输出电流约为1A。针对更高的要求,近年来多采用开关稳压器来对应。不过,有些方法可以解决使用LDO线性稳压器时带来的输出电流增加、容许损耗超标等问题。其中一个方法就是并联LDO线性稳压器(以下简称“LDO”)。

LDO线性稳压器的并联

LDO并联是一种很早以前就有的方法,从理论上看,在理想的情况下,比如将两个1A的LDO并联,可以获得2A(翻倍),从分担损耗的角度看,两个并联可以使每个LDO的损耗减半。

太秀了!单片机内置ADC实现高分辨率采样?

相信ADC的应用或多或少都会用到,在很多场合都有分辨率要求,要实现较高分辨率时,第一时间会想到采用一个较高位数的外置ADC去实现。可是高分辨率外置ADC往往价格都不便宜,这就带来一对矛盾:高指标与低成本。其实利用单片机片上的ADC利用过采样技术就能很好的解决这样一对矛盾体,本文来聊聊这个话题。

什么是过采样?

在信号处理中,过采样是指以明显高于奈奎斯特速率的采样频率对信号进行采样。从理论上讲,如果以奈奎斯特速率或更高的速率进行采样,则可以完美地重建带宽受限的信号。奈奎斯特频率定义为信号带宽的两倍。过采样能够提高分辨率和信噪比SNR,并且通过放宽抗混叠滤波器的性能要求,有助于避免混叠和相位失真。

在很多项目应用中,需要测量信号的动态范围较大,且需要参数的微小变化。例如,ADC需要测量很大的温度范围(比如工业中甚至要求从-200℃~500℃),但仍要求系统对小于1度的变化做出响应。常见的单片机片上ADC位数为12位,如要实现高于12位分辨率要怎么做呢?我们知道奈奎斯特-香农采样定理可知:

USB四大传输方式有哪些?

我们知道,传输事务解决了主机、设备之间交互一次数据的问题,但是有些端点是需要进行多次双向传输或者多次单向传输的,同时因为设备的功能不同,所需要的带宽和传输特性也不同,那么就需要一个更上层的机制解决以上问题,四大传输应运而生。

电源工程师必看:各种滤波电路合集

在整流电路输出的电压是单脉动性电压,不能直接给电子电路使用。所以要对输出的电压进行滤波, 消除电压中的交流成分,成为直流电后给电子电路使用。在滤波电路中,主要使用对交流电有特殊阻抗特性的器件,如:电容器、电感器。本文对其各种形式的滤波电路进行分析。

、滤波电路种类

滤波电路主要有下列几种:电容滤波电路,这是最基本的滤波电路;π 型 RC 滤波电路;π 型 LC 滤波电路;电子滤波器电路。

二、滤波原理

1. 单向脉动性直流电压的特点

如图 1(a)所示。是单向脉动性直流电压波形,从图中可以看出,电压的方向性无论在何时都是一致的, 但在电压幅度上是波动的,就是在时间轴上,电压呈现出周期性的变化,所以是脉动性的。

但根据波形分解原理可知,这一电压可以分解一个直流电压和一组频率不同的交流电压,如图 1(b)所示。在图 1(b)中,虚线部分是单向脉动性直流电压 U。 中的直流成分,实线部分是 UO 中的交流成分。

设计通用串行总线协议接口时的六个关键问题

设计一个使用高速信号进行数据传输的系统有时是十分困难的,尤其是当可供选择的通信协议十分繁多的时候。。虽然很多通信协议都是高速信号的理想选择,但其中有一个协议特别受欢迎,那就是USB协议。它通常和游戏、汽车音响主机、PC和笔记本电脑应用联系在一起。由于支持多种类型的数据传输和高功率充电,USB协议已成为一种更通用的高速数据协议、接口和电缆规范。图1展示了USB自1998年发布以来的发展历程。

“图1:USB协议的发展历程——2019年发布USB
图1:USB协议的发展历程——2019年发布USB 4.0

为了让您了解USB协议是否适合您的系统并满足您的高速接口需求,我们为您列出了设计师通常需要考虑的六个关键问题:

1:您的CPU或MCU的接口功能是什么?

关于I2C总线协议,你想了解的都在这儿了!

I2C总线物理拓扑结构

“”

I2C 总线在物理连接上非常简单,分别由SDA(串行数据线)和SCL(串行时钟线)及上拉电阻组成。通信原理是通过对SCL和SDA线高低电平时序的控制,来 产生I2C总线协议所需要的信号进行数据的传递。在总线空闲状态时,这两根线一般被上面所接的上拉电阻拉高,保持着高电平。

I2C总线特征

I2C总线上的每一个设备都可以作为主设备或者从设备,而且每一个设备都会对应一个唯一的地址(可以从I2C器件的数据手册得知),主从设备之间就通过这 个地址来确定与哪个器件进行通信,在通常的应用中,我们把CPU带I2C总线接口的模块作为主设备,把挂接在总线上的其他设备都作为从设备。

I2C总线上可挂接的设备数量受总线的最大电容400pF 限制,如果所挂接的是相同型号的器件,则还受器件地址位的限制。

PCB生产中做拼板及板边的作用

1、为什么PCB生产时要做「拼板(panelization)」作业?然后打好SMT后又要再麻烦的裁切成单板?

2、PCB的板边(break-away/coupon)又是做什么用的呢?

3、不是说板材使用得越少就越便宜吗?板材使用率又是怎么一回事?

PCB生产为什么要做拼板(panelization)作业?

一般的电路板生产都会进行所谓的「拼板(Panelization)」作业,其目的是为了增加SMT产线的生产效率。

PCB通常都会有所谓「几合一」的板子,比如说二合一(2 in 1)、四合一(4 in 1)…等。

如果你有机会到SMT生产线上走一遭,你会发现SMT产线的最大瓶颈(bottle neck)其实在「锡膏印刷(Solder paste printing)」制程,因为不论PCB的尺寸多大,其印刷所花费的时间几乎都落在25秒上下,也就是说其后面单价较高的快速贴片打件机、泛用贴片打件机所花费的时间如果少于锡膏印刷机,就会空等,站在经济效益的角度来看,这就是一种浪费。

理解输出电压纹波和噪声二:高频噪声分量的来源和抑制

作者: Yuan Tan

第一部分:输出电压噪声

输出电压波形中除了开关频率分量的纹波以外,还存在高频噪声分量,如图1所示。高频噪声是如何形成的呢?主要是由电路中的寄生参数造成的。在实际电路中,PCB走线存在寄生电感和电阻,输入输出电容会引入寄生电感和电阻,两个不同电位的平面之间会形成寄生电容。以Buck电路为例,上下管切换的瞬间,输入回路中的寄生电感与开关管的输出电容谐振。因此,开关节点SW在上升和下降沿会产生高频振荡,且寄生参数越大,振荡的幅度也越大,甚至损坏开关管。该高频振荡会通过SW节点与输出VOUT之间的寄生电容耦合到输出电压,也就是输出电压中的高频噪声。

“图1.
图1. Buck电路的寄生参数

第二部分:输出电压噪声的抑制