cathy的博客

博文分享 | LDO的PSRR测量

作者:Hao Wang 深圳模拟工程师

PSRR是什么

PSRR(Power supply rejection ratio)又称电源抑制比,是衡量电路对于输入电源中纹波抑制大小的重要参数,表示为输出纹波和输入纹波的对数比,单位为分贝(dB)[1],其计算公式为:

“”

式中:

“” :输入电压中纹波峰峰值

博文分享 | 开关电源次级同步整流解锁!

作者:许超(张工子弟社学员)

文章通过我个人的理解来一步步来解析PSR反激开关电源同步整流是到底是怎样实现的,希望对大家有一定的帮助,如有表达不准确之处欢迎指正!

大家都知道同步整流相比功率二极管整流损耗小,效率高,相同功率下电源尺寸可以更小。同步整流的驱动方式有电压型驱动和电流型驱动两种。按照SR门级驱动电压的来源,又分为自驱动和外驱动。

本章要介绍的是在充电器领域内常见的电压型其驱动的同步整流 ,知识点包含以下几个小节,结合芯片内部结构力求全面讲细讲清楚以及设计过程中遇到的一些坑,不过还不知道何为PSR架构的童鞋可以先自行了解一下,本章先不展开来讲了

知识点:

1.同步整流MOS什么时候开通?什么时候该关断?

2.整流芯片是怎么辨别原边导通的波形和RING的?它的逻辑是怎样?靠电路是怎么实现的?

3.除了同步整流功能外,它还可以用来监控次级侧电压,犹如SSR里面的TL341,可以使其动态响应远远优于普通的PSR架构

一.SR 何时开通,何时关断?

【必须看的STM32经典文章】STM32单片机常用库函数详细介绍

1.GPIO初始化函数。

用法:

博客分享 | 利用安全电量计防范假冒电池

作者:Perry Tsao, Maxim Integrated移动方案事业部执行总监

假冒电池组看起来与正品几乎一模一样,通常更便宜。但许多假冒电池缺少安全部件或保护装置,而这些才是正品电池的品质证明。例如,正品锂离子电池组通常使用具有安全防护措施的原电池,防止过冲、过放、过流的保护电路,以及隔离过流的保护装置。

灰市上的电池不仅给消费者带来了巨大风险,也造成原始设备制造商(OEM)失去收入来源。然而,造假者难以根除,相关问题屡禁不止。2017财年,美国海关和边境保护局(CBP)缉获并销毁了近32,000件假货,相比2014年增加了52%,其中包括各种各样的物品,不仅仅是假冒电池。但是,正如CBP在其2017年11月的博客中指出的那样:“造假者总是将重点放在仿造流行的产品上,例如智能手机或化妆品。也许您还记得2015年末至2016年初的悬浮板热潮,其中许多产品使用的是假冒电池,最终引发火灾并造成严重的安全隐患。”

6种常见杂散问题的成因分析及解决办法

虽然目前的高分辨率SAR ADC和Σ-Δ ADC可提供高分辨率和低噪声,但系统设计师们可能难以实现数据手册上的额定SNR性能。而要达到最佳SFDR,也就是在系统信号链中实现无杂散的干净噪底,可能就更加困难了。杂散信号可能源于ADC周围的不合理电路,也有可能是因恶劣工作环境下出现的外部干扰而导致。

针对高分辨率、精密ADC应用中的杂散问题,这里将介绍6种判断其根本原因的方法,并提出相应的解决方案。这些技术和方法将有助于提高终端系统的EMC能力和可靠性。

先说说杂散与SFDR

众所周知,无杂散动态范围(SFDR)表示可从大干扰信号分辨出的最小功率信号。对于目前的高分辨率、精密ADC,SFDR一般主要由基波频率与目标基波频率的第二或第三谐波之间的动态范围构成。然而,由于系统其他方面的因素,可能会导致杂散产生并限制系统的性能。这些杂散可分为输入频率相关杂散和固定频率杂散。输入频率相关杂散与谐波或非线性特性有关。以下将重点分析由电源、外部基准源、数字连接、外部干扰等造成的固定频率杂散。根据应用情况,可降低或完全避免这些类型的杂散,以助于实现最佳的信号链性能。

由ADC周围DC-DC电源而导致的杂散问题

工程师博客分享——利用吸收式滤波器提高线性度

作者: Clarence.Mayott

驱动直接采样高速ADC时,最有可能降低性能的地方是最终放大器与ADC之间的接口。任何直接采样ADC都会在采样过程中产生非线性电荷。每次采样开关闭合时,此电荷就会反射到输入网络中。如果不加以衰减,它会反射回ADC且被重新采样,致使ADC的失真或交调失真性能下降。ADC的输入网络应尽可能接近50 Ω,以便最大限度地吸收此非线性电荷。使用高吸收性滤波器可抑制采样过程中产生的非线性信号音,从而改善SFDR。

利用LTC6409驱动AD9265

LTC6409是一款差分放大器,具有出色的线性度,非常适合驱动AD9265。AD9265是一款16位125Msps高性能ADC,100MHz时的SNR优于77dB,SFDR优于89dB。设计输入网络时,若选择不当,上述特性可能很快不保。几乎所有情况下,ADC与放大器之间都需要滤波器来降低最终滤波器的宽带噪声。此滤波器的设计和布局均很关键。它应为吸收式,将采样过程中的高频非线性成分吸收到50Ω端接电阻中,而不允许其反射回到ADC输入端。图1显示了一个可用在LTC6409和AD9265之间的吸收式滤波器网络。

博客分享——从信号链、电源管理到无线组网,真正的无线电流检测电路是这样的~

上期的参考电路,大家表示很感兴趣→——采用ADI/LTC产品组合的超高精度可编程电压源

那就继续我们的“组合参考电路”系列,今天的电路将告诉我们如何进行无线电流检测。

测量流经检测电阻的电流似乎很简单。放大电压,用ADC读取,不就知道电流是多少吗;但如果检测电阻本身的电压与系统地电压相差很远,检测就会变得比较困难。典型解决方案是在模拟域或数字域消弭该电压差。但这里介绍一种不同的方法——无线。

模拟电流检测IC是紧凑型解决方案,但其可承受的电压差受限于半导体工艺。很难找到额定电压超过100V的器件。如果检测电阻共模电压迅速变化或在系统地电压上下摆动,这些电路便无法精确测量。

数字隔离技术(磁或光学)体积有点大,但能以高精度工作,并且通常可以承受数千伏电压。这些电路需要隔离电源,但有时可以将它集成在隔离器中。如果检测电阻与主系统在物理上隔开,那么可能还要使用长导线或电缆。

如何提高单片机程序执行效率?

首先什么是执行效率。我们平常所说的执行效率就是使用相同的算法在相同输入条件下完成相同计算所产生的系统开销,目前来说一般会更多关注执行时间方面的开销。所有语言编写的代码最终要运行,都要转化成机器码。在更短的时间内完成相同的事那么效率就高。

关于如何提高C语言程序的执行效率,以我多年的编程经验在这里我来谈谈我的想法:

1.尽量避免调用延时函数

没有带操作系统的程序只能在while(1)里面循环执行,如果在这里面调用大量的延时这样会很消耗CPU的资源,延时等于是让他在这歇着不干事了,只有中断里面的才会执行。如果仅仅是做一个LED一秒闪烁一次的程序,那么很简单,可以直接调用延时函数,但是实际的项目中往往在大循环里有很多事要做,对于实时性要求较高的场合就不行了。为了避免使用延时,可以使用定时器中断产生一个标志位,到了时间标志位置1,在主程序里面只需要检测标志位,置1了才执行一次,然后清标志。其他时间就去做别的事了,而不会在这等待了。最好的例子就是数码管的显示,使用中断调显示,在我们的例程里面有。然后是那个按键检测的,一般的程序都是做的while(!key)等待按键释放,如果按键一直按着,那后面的程序就永远得不到运行死在这了,其实可以做一个按键标志检测下降沿和上升沿就可以避免这个问题了。

博客分享 | PCB设计中如何选择自动布线和手动布线?

PCB设计工程师在设计PCB时,往往很想使用自动布线。通常,纯数字的电路板(尤其信号电平比较低,电路密度比较小时)采用自动布线是没有问题的。但是,在设计模拟、混合信号或高速电路板时,如果采用PCB设计软件的自动布线工具,可能会出现一些问题,甚至很可能带来严重的电路性能问题。

图1 采用自动布线为图3所示电路原理图设计的电路板的顶层
图1 采用自动布线为图3所示电路原理图设计的电路板的顶层

图2 采用自动布线为图3所示电路原理图设计的电路板的底层
图2 采用自动布线为

秒懂时钟Part 6: 时钟相位噪声测量中的杂散

在本月的文章中,我将讨论时钟相位噪声测量中的杂散。大多数了解时钟的人都会认识到杂散是下面相位噪声图中的独特的尖峰。杂散通常是不受欢迎的,在频率合成中低水平杂散并不少见。它们就像是啤酒上的泡沫。这个特定的曲线来自一个AWG(任意波形发生器),配置为1 MHz FM的100 MHz正弦输出。在本文中,我将使用此数据或类似的数据。

“”

在第一篇文章中,我将简要回顾一下杂散及其特征。接下来,我将在计算总RMS相位抖动时讨论如何计量它们。最后,我将总结一下三种在相位噪声图上显示(或不显示)杂散的方法的相对优点。在接下来的第二部分,我将讨论在评估和测试目的上产生杂散的有用性。

什么是杂散

技术术语“spur”来自拉丁语spurius,意思是非法的或虚假的伪造。还有另外一个更普遍的用词,指的是牛仔的马刺和圣安东尼奥马刺队。巧合的是,这两个含义在此处暗合。