cathy的博客

博客分享 | 晶振负载电容外匹配电容计算及晶振振荡电路设计经验总结

对应MCU(STM32F103XX)、WiFi(AP6212、AP6XXX)或USB HUB(FE1.1S、GL850G)一般需外部提供时钟信号,需要外挂一颗晶振,常有客户问到,如何结合晶振的负载电容计算外匹配电容容值以及在晶振振荡电路设计时需注意哪些事项,所以小编对此做一个归纳总结,如有不正确之处,欢迎指正。

(1)晶振负载电容定义

晶体元件的负载电容是指在电路中跨接晶体两端的总的外界有效电容,是晶振要正常震荡所需要的电容。如果从石英晶体插脚两端向振荡电路方向看进去的全部有效电容为该振荡电路加给石英晶体的负载电容。石英晶体的负载电容的定义如下式:

“”

其中:

CS为晶体两个管脚之间的寄生电容(又名晶振静态电容或Shunt Capacitance),在晶体的规格书上可以找到具体值,一般0.2pF~8pF不等。如图二是某32.768KHz的电气参数,其寄生电容典型值是0.85pF(在表格中采用的是Co)。

在信号传输线上为什么要线路阻抗匹配?如何匹配?

按照传输线理论,当负载与输出不匹配时,信号的传输为非理想行波状态(驻波或反射),会出现波形失真或衰减。阻抗匹配则传输功率大,对于一个电源来讲,当它的内阻等于负载时,输出功率最大,此时阻抗匹配。最大功率传输定理,如果是高频的话,就是无反射波。对于普通的宽频放大器,输出阻抗50Q,功率传输电路中需要考虑阻抗匹配,可是如果信号波长远远大于电缆长度,即电缆长度可以忽略的话,就无须考惠阻抗匹配了。

阻抗匹配是指在能量传输时,要求负载阻抗要和传输线的特征阻抗相等,此时的传输不会产生反射,这表明所有能量都被负载吸收了;反之则在传输中有能量损失。

在高速的设计中,阻抗的匹配与否关系到信号质量的优劣。阻抗匹配的技术可以说丰富多样,但是在具体的系统中怎样才能比较合理地应用,需要衡量多个方面的因素。例如,在系统设计中,很多采用的都是源端的串联匹配。对于什么情况下需要匹配,采用什么方式的匹配,为什么采用这种方式,以下逐一分析。例如,差分的匹配多数采用串联终端的匹配;时钟采用并联终端匹配。

1)串联终端匹配串联终端匹配的理论出发点是在信号源端阻抗低于传输线特征阻抗的条件下,在信号的源端和传输线之间串接一个电阻R,使源端的输出阻抗与传输线的特征阻抗相匹配,抑制从负载端反射回来的信号发生再次反射。

秒懂时钟Part 7: 探讨时钟相位噪声测量中的杂散(下篇)

在本辑的“秒懂时钟”文章中,我想继续上期关于时钟相位噪声测量中杂散的讨论。上次我们说道,时钟相位噪声图中的杂散信号是离散频率分量。杂散通常很少且幅度较低,但通常不受欢迎,因为它们会影响时钟的总抖动。

然而,杂散也可以用于时序设备的评估和表征。我们可以使用配置为低电平调制的实验室信号源将直接或间接的频率分量作为输入激励应用于时钟设备或系统。然后用频谱分析仪或相位噪声分析仪测量得到的输出时钟杂散。

在这篇文章中,我将简要回顾一下适合的信号调制选项。接下来我将讨论一些值得注意的测量。最后,我将给出选择示例的结果,抖动传输。欢迎观看完整文章。

调制选择,既不是所有杂散都是相等的

大多数实验室级别的发生器有三种基本的模拟调制选项,即AM,FM或PM,分别指的是调幅,调频和相位调制。每个人都在我们的“ spur toolbox ”中占有一席之地。但首先,考虑下面的每个频谱分析仪屏幕大小。该载波标称为100MHz,并且在距载波100kHz偏移的每一侧有一对对称的杂散信号。每个杂散距离载波约60dB。

你能告诉哪个屏幕上限对应于AM,FM或PM吗?不,不是,没有额外的信息。在这个特定的例子中,图像按字母顺序排列。

深入理解MOSFET规格书datasheet

作为一个电源方面的工程师、技术人员,相信大家对 MOSFET 都不会陌生。在电源论坛中,关于MOSFET 的帖子也应有尽有:MOSFET 结构特点/工作原理、MOSFET 驱动技术、MOSFET 选型、MOSFET 损耗计算等,论坛高手、大侠们都发表过各种牛贴,我也不敢在这些方面再多说些什么了。

工程师们要选用某个型号的 MOSFET,首先要看的就是规格书/datasheet,拿到 MOSFET 的规格书/datasheet 时,我们要怎么去理解那十几页到几十页的内容呢?

本帖的目的就是为了和大家分享一下我对 MOSFET 规格书/datasheet 的理解和一些观点,有什么错误、不当的地方请大家指出,也希望大家分享一下自己的一些看法,大家一起学习。

PS: 1. 后续内容中规格书/datasheet 统一称为 datasheet

2. 本帖中有关 MOSFET datasheet 的数据截图来自英飞凌 IPP60R190C6 datasheet

1、VDS

Datasheet 上电气参数第一个就是 V(BR)DSS,即 DS 击穿电压,也就是我们关心的 MOSFET 的耐压

快充QC的基本电源架构及工作原理

快充QC的基本电源结构采用反激Flyback+副边(次级)同步整流SSR,对于反激变换器,根据反馈取样的的方式,可以分为:原边(初级)调节和副边(次级)调节;根据PWM控制器所在的位置,可以分为:原边(初级)控制和副边(次级)控制。

1、原边(初级)调节和副边(次级)调节

输出电压的稳定需要反馈环节,将其变化的信息送给PWM主控制器,从而对输入电压、输出负载的变化实现调节。根据反馈取样方式的不同,可分为原边(初级)调节和副边(次级)调节,如图1和图2所示。

牛人博客分享 | 手机PCB设计的RF布局技巧

手机功能的增加对PCB板的设计要求更高,伴随着一轮蓝牙设备、蜂窝电话和3G时代来临,使得工程师越来越关注RF电路的设计技巧。射频(RF)电路板设计由于在理论上还有很多不确定性,因此常被形容为一种“黑色艺术”,但这个观点只有部分正确,RF电路板设计也有许多可以遵循的准则和不应该被忽视的法则。不过,在实际设计时,真正实用的技巧是当这些准则和法则因各种设计约束而无法准确地实施时如何对它们进行折衷处理。当然,有许多重要的RF设计课题值得讨论,包括阻抗和阻抗匹配、绝缘层材料和层叠板以及波长和驻波,所以这些对手机的EMC、EMI影响都很大,下面就对手机PCB板的在设计RF布局时必须满足的条件加以总结:

1、尽可能地把高功率RF放大器(HPA)和低噪音放大器(LNA)隔离开来。

简单地说,就是让高功率RF发射电路远离低功率RF接收电路。手机功能比较多、元器件很多,但是PCB空间较小,同时考虑到布线的设计过程限定最高,所有的这一些对设计技巧的要求就比较高。这时候可能需要设计四层到六层PCB了,让它们交替工作,而不是同时工作。高功率电路有时还可包括RF缓冲器和压控制振荡器(VCO)。确保PCB板上高功率区至少有一整块地,最好上面没有过孔,当然,铜皮越多越好。敏感的模拟信号应该尽可能远离高速数字信号和RF信号。

博客 | 快速了解如何利用NFC保护您的系统?

作者:Jim Harrison, Lincoln Technology Communications特邀作者

每个人,特别是每个设计工程师,现在都越来越重视安全性。我们甚至都没有意识到,每人每天要在手机上输入20次6位数的密码(或指纹),以及输入其他各种app密码20次。您正在设计的新装置或设备实际上也需要访问保护。

如果我正在设计主要的工业控制系统,会希望增加访问控制以及记录谁更改了设备上的哪些设置的功能,测试设备、自动售货机、消费类可穿戴设备、区域访问等也是如此,并且它们很容易实现。

博文分享 | 异形PCB,你如何设计?

我们预想中的完整 PCB 通常都是规整的矩形形状。虽然大多数设计确实是矩形的,但是很多设计都需要不规则形状的电路板,而这类形状往往不太容易设计。本文介绍了如何设计不规则形状的 PCB。

如今,PCB 的尺寸在不断缩小,而电路板中的功能也越来越多,再加上时钟速度的提高,设计也就变得愈加复杂了。那么,让我们来看看该如何处理形状更为复杂的电路板。

如图 1 所示,简单 PCI 电路板外形可以很容易地在大多数 EDA Layout 工具中进行创建。

C语言访问MCU寄存器的三种方式

MCU中的特殊功能寄存器SFR,实际上就是SRAM地址已经确定的SRAM单元,在C语言环境下对其访问归纳起来有3种方法。

1.对C编译器进行语法扩充

对C编译器进行语法扩充。例如MCS51系列单片机的C-51语法中扩充了sfr关键字,举例如下:

sfr P0 = 0x80;

这样操作0x80单元直接写P0即可。

又如Atmel的AVR系列单片机,其ICCAVR和GCCAVR编译器都没有定义新的数据类型,只能采用标准C的强制类型转换和指针来实现访问MCU的寄存器。而IAR和CodeVisionAVR编译器对ANSI C进行了扩充,定义了新的数据类型,使C语言可以直接访问MCU的有关寄存器,例如在IAR中可以使用:

有效降低传导辐射干扰的小技巧

作者:TI 工程师 Vental Mao

一直以来,设计中的电磁干扰(EMI)问题十分令人头疼,尤其是在汽车领域。为了尽可能的减小电磁干扰,设计人员通常会在设计原理图和绘制布局时,通过降低高di / dt的环路面积以及开关转换速率来减小噪声源。

但是,有时无论布局和原理图的设计多么谨慎,仍然无法将传导EMI降低到所需的水平。这是因为噪声不仅取决于电路寄生参数,还与电流强度有关。另外,开关打开和关闭的动作会产生不连续的电流,这些不连续电流会在输入电容上产生电压纹波,从而增加EMI。

因此,有必要采用一些其他方法来提高传导EMI的性能。本文主要讨论的是引入输入滤波器来滤除噪声,或增加屏蔽罩来锁住噪声。