cathy的博客

电感种类和特性分析及选型指南

电感器是开关转换器中非常重要的元器件,如用于储能及功率滤波器。电感器的种类繁多,例如用于不同的应用(从低频到高频),或因铁芯材料不同而影响电感器的特性等等。用于开关转换器的电感器属于高频的磁性组件,然而因材料、工作条件(如电压与电流)、环境温度等种种因素,所呈现的特性和理论上差异很大。因此在电路设计时,除了电感值这个基本参数外,仍须考虑电感器的阻抗与交流电阻和频率的关系、铁芯损失及饱和电流特性等等。本文将介绍几种重要的电感铁芯材料及其特性,也引导电源工程师选择市售标准的电感器。

前言

电感器(inductor)是一种电磁感应组件,用绝缘的导线在绕线支架(bobbin)或铁芯(core)上绕制一定匝数的线圈(coil)而成,此线圈称为电感线圈或电感器。根据电磁感应原理,当线圈与磁场有相对运动,或是线圈通过交流电流产生交变磁场时,会产生感应电压来抵抗原磁场变化,而此抑制电流变化的特性就称为电感(inductance)。

电感值的公式如式(1),其与磁导率、绕组匝数N的平方、及等效磁路截面积Ae成正比,而与等效磁路长度le成反比。电感的种类很多,各适用于不同的应用之中;电感量与线圈绕组的形状、大小、绕线方式、匝数、及中间导磁材料的种类等有关。

秒懂时钟Part 11-噪声源时钟树第1部分案例

作者: Silicon Labs

在本单元秒懂时钟系列——噪声源时钟树第1部分案例,我们将超越原型或“标准”时钟树。我将对添加抖动衰减器的动机及其对时钟树抖动估计的影响进行讨论,所以让我们开始吧。

准时钟树

板级时钟树或时钟分配网络,例如数据中心应用,通常用晶体或低抖动XO(晶体振荡器)来描述,其连接到时钟发生器,后跟一个或多个缓冲器,如下所示。这就是我所说的标准时钟树:

“”

在该示例中,时钟树的根或源是低抖动XO,其总体上确定时钟树的频率稳定性。紧接着,时钟发生器将输入频率从XO缩放到几个不同(通常更高)的输出频率。最后,时钟缓冲器采用这些输出频率之一并产生具有相同频率的多个输出时钟。图中的彩色箭头表示不同的时钟频率。

STM32单片机调试好的串行通信程序(实现两个单片机之间的通信)直接可以使用

作者:富贵人

1.串行通信的基本概念

串行是与并行想对应的,并行通信是指数据的各位同时被传送。串行通信是将要传送的数据一位位的依次顺序发送。

串行通信实现的是两个对象之间的数据传递,对象通常是单片机。通信实际上是在两个单片机上连上线,通过线路来传递信息。

“”

如图,调制解调器非常重要,其作用是实现数字信号和模拟信号的转换。但是注意,调制解调器是远距离传输才有用。近距离传输不需要调制解调器(零Modem方式)。因此进行单片机的实验只需要将相应接口的线路连好就行。连接示意图如图

关于噪声的11个误区,你陷在哪一个?

噪声是模拟电路设计的一个核心问题,它会直接影响能从测量中提取的信息量,以及获得所需信息的经济成本。遗憾的是,关于噪声有许多混淆和误导信息,可能导致性能不佳、高成本的过度设计或资源使用效率低下。

今天咱们就跟随ADI攻城狮的脚步了解下关于模拟设计中噪声分析的11个由来已久的误区吧~

1、降低电路中的电阻值总是能改善噪声性能

噪声电压随着电阻值提高而增加,二者之间的关系已广为人知,可以用约翰逊噪声等式来描述:erms=√4kTRB,其中erms为均方根电压噪声,k为玻尔兹曼常数,T为温度(单位为K),R为电阻值,B为带宽。这让许多工程师得出结论:为了降低噪声,应当降低电阻值。虽然这常常是正确的,但不应就此认定它是普遍真理,因为在有些例子中,较大的电阻反而能够改善噪声性能。举例来说,在大多数情况下,测量电流的方法是让它通过一个电阻,然后测量所得到的电压。根据欧姆定律V=I×R,产生的电压与电阻值成正比,但正如上式所示,电阻的约翰逊噪声与电阻值的平方根成正比。由于这个关系,电阻值每提高一倍,信噪比可以提高3dB。在产生的电压过大或功耗过高之前,此趋势一直是正确的。

2、所有噪声源的噪声频谱密度可以相加,带宽可以在最后计算时加以考虑

飘忽不定的介电常数

相关阅读:
谜一样的电容之隔直通交

相信大家已经看过了我的上篇谜一样的电容之隔直通交的处女作,弹指一挥间,一周就过去了,小陈又和大家见面了(说到小陈,大家不要误会,实在是前高速先生小陈名气太大,大家叫我小小陈也可以)。作为新人,初来乍到,在此算是正式和大家打个招呼,以后还请大家多多关照。今天我们来了解一番电容中绝缘介质的相对介电常数,可能有的小伙伴就要问了:“电容器生产出来之后,介质都固定了,我们了解电容介质的介电常数的影响又有什么作用呢?”请大家稍安勿躁,且听我慢慢道来。作为攻城狮不仅仅需要关注实际电容器,更需要关注信号传输路径中的电容。例如信号线对地平面构成的电容大小会直接影响传输线阻抗、信号线对周围信号线的电容大小会直接影响串扰等。

电子工程师必备:运算放大器11种经典电路

运算放大器组成的电路五花八门,令人眼花瞭乱。工程师在分析它的工作原理时常抓不住核心,令人头大。为此小编特地搜罗天下运放电路之应用,来个“庖丁解牛”,希望各位看完后有所收获。

遍观所有模拟电子技术的书籍和课程,在介绍运算放大器电路的时候,无非是先给电路来个定性,比如这是一个同向放大器,然后去推导它的输出与输入的关系,然后得出Vo=(1+Rf)Vi,那是一个反向放大器,然后得出Vo=-Rf*Vi。最后学生往往得出这样一个印象:记住公式就可以了!如果我们将电路稍稍变换一下,他们就找不着北了!偶曾经面试过至少100个以上的大专以上学历的电子专业应聘者,结果能将我给出的运算放大器电路分析得一点不错的没有超过10个人!其它专业毕业的更是可想而知了。

今天,教各位战无不胜的两招,这两招在所有运放电路的教材里都写得明白,就是“虚短”和“虚断”,不过要把它运用得出神入化,就要有较深厚的功底了。

虚短和虚断的概念

由于运放的电压放大倍数很大,一般通用型运算放大器的开环电压放大倍数都在80dB以上。而运放的输出电压是有限的,一般在10V~14V。因此运放的差模输入电压不足1mV,两输入端近似等电位,相当于“短路”。开环电压放大倍数越大,两输入端的电位越接近相等。

门驱动的欠压保护功能及其注意事项

IGBT/MOSFET等全控型开关器件在现代电力电子系统中的应用日趋广泛,相应的驱动芯片集成度也越来越高,其中欠压保护功能由于可以防止开关管在门极电压较低时饱和导通,被各大驱动芯片公司集成到了自家的驱动芯片上。本文以TI的UCC5320驱动芯片为例,介绍欠压保护的作用。另外,在双电源供电时欠压保护功能可能会失效,而UCC5320E在双电源供电时依然可以实现欠压保护。

一、欠压保护的重要性

图1显示了在一个固定Vds下,门极电压Vgs会如何影响MOSFET。虚线的右边是饱和区,在这个区域里漏极电流不受漏源电压Vds的影响,只取决于门极电压Vgs。MOSFET工作在饱和区域时功耗较大,因为此时它同时流过大电流承受大电压。虚线的左边是线性区,此时MOSFET相当于一个小电阻,可以流过大电流而不在漏源两端产生大的电压差。对于大电流的应用场合,让MOSFET工作在饱和区是非常危险的,因为此时其功耗会非常大。带欠压保护UVLO功能的驱动芯片可以防止MOSFET/IGBT饱和导通,保证其工作在安全区域。

一种低成本差动音频信号传输方案

集成了主机和屏幕的车载显示面板大多数放置在主控台的中央(图1),显示面板的位置较低会对驾驶员查看信息或者导航地图造成不便,进而对行车安全造成影响。以后越来越多的车载显示面板会放置在主控台上方,甚至略高于主控台(图2)。

针对上述情况,有些应用会将音频放大器和主机分离,并且将音频放大器放置在较低的位置,现有的低成本音频放大器采用模拟信号输入,因此主机输出的模拟音频信号需要经过一段较长距离的传输才能到达音频放大器。

“”
图1车载显示面板位置较低情况 图2 车载显示面板位置较高情况

针对车载显示面板远离音频放大器的应用,我们设计了一种低成本的差动音频信号传输方案,如下图3所示。Tuner/DSP输出四路模拟音频信号,音频信号经过两片OPA1679后转换成四对差分信号,经过双绞线的差分传输后进入TPA6404,最终通过扬声器实现音频放大。

秒懂时钟Part 10-半终端差分输出时钟的情况

作者: Silicon Labs

本篇文章中,我们将针对做出正确输出时钟测量所需的基本要件,以及有时可能被忽视的最佳实践方式进行回顾。

熟悉Silicon Labs(亦称“芯科科技”)的时钟IC评估板的人都知道,我们通常运用交流耦合的方式设计输入和输出时钟,并为差分时钟信号的每个极性提供单独的SMA RF连接器。这可以说是最灵活的方法之一,能够立即将输出时钟连接到如频率计数器,示波器,相位噪声分析仪,频谱分析仪等测试设备上的单端50Ω输入。这是因为交流耦合电容可以防止我们在测试设备输入上使用直流偏置。

这里我们将提到最佳实践规则:在进行测量时,差分输出缓冲器的两个极性都应该被终止,这也包括未测量的极性。但是不这样做会发生什么后果呢?这就是本文的主题,半终端差分输出时钟的情况。欢迎往下阅读或点击阅读原文至Silicon Labs中文社区观看全文。

相位噪声测量示例

首先,让我们在频域下进行工作,并且考虑以下的相位噪声图。在屏幕截图中Si5345评估板的OUT0用于注释的以下两种情况。

1、OUT0B连接到50Ω示波器输入。这是正确(完全)终止的情况。

大咖谈技术丨如何利用热插拔确定BMS单元连接序列

作者: 瑞萨君

目前,锂离子(Li-ion)电池技术被应用于各种便携式系统,包括真空吸尘器、锄草设备、手持式电动工具、电动自行车和能量存储系统。与其他化学电池相比,锂离子电池体积更小,重量更轻,电池寿命更长,但需要监控和保护以确保使用安全。

电池管理系统(BMS)的主要任务是保护电池组,而电池组监视器是协助保护BMS设备的关键。它监控每个电池组的电压,以及整个电池组的电压、温度和电流。监控这些参数使BMS控制器能够为整个电池组及其各电池单元提供安全的运行窗口。

BMS设备运行包含很多方面内容,但本文将主要讨论热插拔排序以及如何实现电池连接序列,而这些序列决定了BMS设备的热插拔性能。大多数工程师都熟悉热插拔这个术语,但是在处理BMS设备和开发热插拔测试排列时,由于存在大量BMS连接,工程师需要时刻牢记其功效。单个电池组监视器可以连接多达15个以上的热插拔。

热插拔测试运行条件