cathy的博客

【技术干货】电路入门:关于二极管、晶体管、FET你了解多少呢?

上次我们学习了无源元件,今天我们接着来复习一下半导体以及使用了半导体的有源元件-二极管、晶体管、FET。

相关阅读:
【技术干货】电路入门:关于无源元件你了解多少呢?

导电能力介于导体与绝缘体之间的物质 - 半导体

硅和锗是位于银、铝等导体和石英、陶瓷等绝缘体之间,用于制造半导体器件的原材料,具有一定电阻率。不同的物质其产生的不同电阻率是由于可移动的电子量不同引起的。这种可移动电子叫“自由电子”。一般我们把可以通过向其摻入杂质来改变自由电子的数量,并可控制电流动的物质称为半导体。
根据电流流动的构造,可将半导体分为N型和P型两类。

半导体的电流流通原理

(1) N型半导体

【技术干货】电路入门:关于无源元件你了解多少呢?

我们周遭所使用的所有电子设备均通过电流来控制其运行,而电流的连通则需要电路的支持。

通过在电路上搭载各种元器件,我们可实现由简单到复杂的各种操作。

为了能够更好的理解电路,首先让我们来了解一下构成电路的各个元器件的工作特性。

电路组成中不可或缺的无源元件

电阻、电容器、线圈等被称为无源元件,主要用于消耗、储存、释放电力,以实现功率放大、整流等控制操作。

电阻的工作

电阻也称为电阻器,可通过阻止电流运行来对电流进行控制,利用电流的改变影响电压,通过电流可产生任意电压。

电阻值的单位为Ω(欧姆),电阻值越大其对电流的阻止能力就越强,因此通过的电流也就越小。

在电阻的两端连接电压后,电流就可以流通。电流与电压成正比,与电阻成反比。这就是欧姆定律。利用欧姆定律,我们可以计算出电流、电压、以及电阻的值。

电容器的工作

初次级“Y电容”到底放哪个位置更好?

Y电容,是我们开关电源工程师每天都要接触到的一个非常关键的元器件,它对EMI的贡献是相当的大的,但是它是一个较难把控的元器件,原理上并没有那么直观易懂,在EMI传播路径中需要联系到很多的寄生参数才能够去分析。

我们都知道开关电源变压器的原副边都跨接了一个Y电容,很多时候这个Y电容必须要,没了它EMI就过不了。此Y电容的摆放位有多种方法,到底怎么接效果才是最好的?

在做EMI实验时,往往Y电容对共模干扰的高频段影响比较大,所以我们首先要找到开关电源中的高频干扰源。最常见最熟悉的高频干扰源有两个,以反激为例,一是原边的开关MOS,二是副边的整流二极管,如下图

“”

高频振铃1:MOS管关断时的振荡,高频振铃2:副边整流二极管关断时的振荡。

首先分析一下高频干扰1(原边开关MOS管的干扰),干扰源为Q1,如下图

PCB走线角度选择不该90°? — PCB Layout 跳坑指南

现在但凡打开SoC原厂的PCB Layout Guide,都会提及到高速信号的走线的拐角角度问题,都会说高速信号不要以直角走线,要以45度角走线,并且会说走圆弧会比45度拐角更好。事实是不是这样?PCB走线角度该怎样设置,是走45度好还是走圆弧好?90度直角走线到底行不行?这是老wu经常看见广大 PCB Layout 拉线菌热议的话题。

经验总结:电路设计的14个误区

电路设计并不是想当然,你脑子一拍就可以设计出来,有没有经验设计出来的东西是相差千里。今天我们来看看电子工程师会出现的下面的几个误区,你是不是也这样想的。

误区一:这板子的PCB 设计要求不高,就用细一点的线,自动布吧。

点评:自动布线必然要占用更大的PCB 面积,同时产生比手动布线多好多倍的过孔,在批量很大的产品中,PCB 厂家降价所考虑的因素除了商务因素外,就是线宽和过孔数量,它们分别影响到PCB 的成品率和钻头的消耗数量,节约了供应商的成本,也就给降价找到了理由。

误区二:这些总线信号都用电阻拉一下,感觉放心些。

点评:信号需要上下拉的原因很多,但也不是个个都要拉。上下拉电阻拉一个单纯的输入信号,电流也就几十微安以下,但拉一个被驱动了的信号,其电流将达毫安级,现在的系统常常是地址数据各32位,可能还有244/245 隔离后的总线及其它信号,都上拉的话,几瓦的功耗就耗在这些电阻上了。

误区三:CPU 和FPGA的这些不用的I/O 口怎么处理呢?先让它空着吧,以后再说。

工程师最常遇到的PCB设计十大问题

在PCB设计中,工程师难免会面对诸多问题,一下总结了PCB设计中十大常见的问题,希望能对大家在PCB设计中能够起到一定的规避作用。

一、字符的乱放

1、字符盖焊盘SMD焊片,给印制板的通断测试及元件的焊接带来不便。

2、字符设计的太小,造成丝网印刷的困难,太大会使字符相互重叠,难以分辨。

二、图形层的滥用

1、在一些图形层上做了一些无用的连线,本来是四层板却设计了五层以上的线路,使造成误解。

2、设计时图省事,以Protel软件为例对各层都有的线用Board层去画,又用Board层去划标注线,这样在进行光绘数据时,因为未选Board层,漏掉连线而断路,或者会因为选择Board层的标注线而短路,因此设计时保持图形层的完整和清晰。

3、违反常规性设计,如元件面设计在Bottom层,焊接面设计在Top,造成不便。

三、焊盘的重叠

1、焊盘(除表面贴焊盘外)的重叠,意味孔的重叠,在钻孔工序会因为在一处多次钻孔导致断钻头,导致孔的损伤。

模拟设计的100条圣经

模拟设计的100条圣经

1、Capacitors and resistors have parasitic inductance, about 0.4nH for surface mount and 4nH for a leaded component.

电阻跟电容都有寄生电感,贴片封装的大概0.4nH,插件的大概4nH。

2、Capacitors and resistors have parasitic inductance, about 0.4nH for surface mount and 4nH for a leaded component.

如果你不想通过在高带宽晶体管三个引脚中的至少两个引脚放置损耗元件的方法消除振荡.铁氧体磁珠会起到很好的作用.

3、When taking DC measurements in a circuit and they don"t make sense, suspect that something is oscillating.

对一个电路采用直流测试并且不起作用时,应该怀疑有元件在振荡

零中频架构,这个帖子讲透了

零中频(ZIF)架构自无线电初期即已出现。如今,ZIF架构可以在几乎所有消费无线电应用中找到,无论是电视、手机,还是蓝牙技术。ZIF技术取得的最新进步对现有高性能无线电架构形成了挑战,其带来的新产品取得了性能上的突破,能够实现ZIF技术以前望尘莫及的新型应用。本文将探讨ZIF架构的诸多优势,介绍这些优势如何使无线电设计性能达到的新高度。

一文读你了解VCC、VDD、VEE、VSS!

一、解释

VCC:C=circuit表示电路的意思,即接入电路的电压;

VDD:D=device表示器件的意思,即器件内部的工作电压;

VSS:S=series表示公共连接的意思,通常指电路公共接地端电压。

二、另外一种解释:Vcc和Vdd是器件的电源端。

Vcc是双极器件的正,Vdd多半是单级器件的正。

下标可以理解为NPN晶体管的集电极C,和PMOSorNMOS场效应管的漏极D。同样你可在电路图中看见Vee和Vss,含义一样。因为主流芯片结构是硅NPN所以Vcc通常是正。如果用PNP结构Vcc就为负了。建议选用芯片时一定要看清电气参数。

Vcc来源于集电极电源电压,一般用于双极型晶体管,PNP管时为负电源电压,有时也标成-Vcc,NPN管时为正电压。

Vdd来源于漏极电源电压,用于MOS晶体管电路,一般指正电源,因为很少单独用PMOS晶体管,所以在CMOS电路中Vdd经常接在PMOS管的源极上。

Vss源极电源电压,在CMOS电路中指负电源,在单电源时指零伏或接地。

Vee发射极电源电压,EmitterVoltage,一般用于ECL电路的负电源电压。

一文理清IC放大器中那些“去耦”与“接地”问题

首先请思考:电流流向何处?

表面来看,这是一个显而易见的问题。但提到电流时,人们一般都会想到电流从某个地方“流出”,然后“流过”其他地方,却忽视了电流如何流回源点的问题。在实际操作中,人们似乎认为所有“接地”或“电源电压”点都是相等的。但忽略了一个事实 :这些点构成电流在其中流动并产生有限电压,它们是导体网络的一部分。

如果要进行前瞻性规划,我们必须得考虑电流的起点及返回点,必须确定结果产生的电压降的作用。而这又要求对去耦及接地电路的原理有一定的了解。然而在设计采用了集成电路时,这样的信息往往无从获取与难以理解。

我们的IC放大器是非常常用的线性IC之一,但幸运的是:就功率及接地问题而言,多数运算放大器都可归入少数类别。尽管系统配置可能带来令人生畏的去耦及信号回路问题,但通过了解运算放大器,我们可以找到解决更多此类问题的基本方法。

运算放大器有四个引脚

一般的读者在看过任何一本运算放大器的课本之后,可以都会认为:理想的运算放大器应该有三个引脚——一对差分输入引脚和一个输出引脚。如下图所示: