cathy的博客

什么是低压降稳压器(LDO)的压降? - 第五部分

之前在文章中,我们探讨了“现实中的电源抑制比(PSRR) - 第四部分”,通过示例讲解PSRR参数。

往期文章
什么是 LDO 噪声?第一部分
什么是积分噪声?-第二部分
什么是 PSRR?- 第三部分
现实中的电源抑制比(PSRR) - 第四部分

本文章继续此系列,将聚焦“低压降”的含义,并介绍安森美半导体低压降和极低压降值的LDO产品和方案。您的应用需要低压降的LDO吗?我们将讲解压降的含义,如何测量以及具有标准压降和极低压降的LDO之间的差异。

PCB的板级去耦设计方法

一,什么是PCB中的板级去耦呢?

板级去耦其实就是电源平面和地平面之间形成的等效电容,这些等效电容起到了去耦的作用。主要在多层板中会用到这种设计方法,因为多层板可以构造出电源层和地层,而一层板与两层板没有电源层和地层,所以设计不了板级去耦。

二,如何设计板级去耦。

多层板pcb在设计板级去耦时,为了达到最好的板级去耦效果,一般在做叠层设计时把电源层和地层设计成相邻的层。相邻的层降低了电源、地平面的分布阻抗。从平板电容的角度来分析,由电容计算公式C=εs/4πkd可以,两平板之间的距离d越小,电容值越大,相当于加了一个大的电解电容,相邻的层两平面的d是最小的,所以电源层和地层设计成相邻的层,可以达到最好的去耦效果。

三,实倒分析

1.例如设计四层板时,中间两层分别是电源板和地层

开关电源的电压和电流控制模式你清楚吗?

1、引言

控制电路就是保证在负载波动的条件下输出的稳定。在选择开关电源控制方案时,控制模式主要分两种:一种是监测输出电压的大小,调节PWM占空比,保证输出电压的稳定,即电压控制模式。另一种同时监测电压和电流,调节PWM占空比,保证输出电压的稳定和电流在正常范围内,不至于过流,即电流控制模式。下面将分别介绍两种控制模式。

2、电压控制

电压控制模式,输出电压的大小是一个至关重要的量。原理如图所示。

“”

电压控制模式的原理是将负载端的采到的电压Vf作为误差放大器的输入,误差放大器的另一个输入是基准电压Vref,两者比较后送到PWM控制器的输入与固定的锯齿波信号进行处理,产生PWM信号来控制开关管的导通和关断,进而实现电压的调节。

电压控制模式的优点非常突出,存在控制思路简单、电路结构单一、输出阻抗低。但是电压反馈也存在相位延迟,相应速度不够快的缺点,设计的环路补偿网络常常过于复杂,且还需要单独设计过电流保护电路。

关于PCB设计,需要知道的几个EMI指南

下文是硬件工程师在PCB设计早期容易忽略,却很有用的几个EMI设计指南,这些指南也在一些权威书刊中常常被提到。

“”

设计指南1 :最小化电源和高频信号的电流环路面积

“”

在设计阶段,首先我们需要知道两个要点:

1.信号电流总是回到源端(即电流路径总是以环路的形式存在) 。

设计指南2:保持信号返回平面的完整

高速信号回流环路实际分析

1、实际走线分析:

“”

上面的走线橘色为信号走线,周围绿色(波浪标注)为周围包地,下方为第二层完整地平面。

从上图来看设计师的本意是好的,有参考地平面,周围也有包地,此时设计正确的话可以保证回流路径阻抗最小,因为可以从两边包地回流和地平面回流,此时可以效果最好。

但是,上面出现的问题就是包地并未通过地孔和地平面连接起来。具体如下所示:

假设回流路径是两边包地,信号流向为从右向左,下边部分包地红色路径为回流信号,此时回流信号向右走,但是因为前面没有接地孔,所以信号返回,寻找最小路径(图中下边白色路径);另上边回流也是,因为靠近过孔处无接地过孔,则信号沿着灰色路线找到最近的接地过孔,此时这两个不完整的包地,导致了信号路径阻抗不是最小,且下边走线较细,寄生电感较大,且为一端接地,此时模型就是一个天线,很有可能导致“天线辐射能量”,所以有了完整的地平面,包地只是锦上添花的行为,但是一定要注意包地处理不好,有可能导致更为严重的辐射。

博文分享:单片机C语言之串口通信协议

现实生活中, 我们总是要与人打交道,互通有无。单片机也一样,需要跟各种设备交互。例如汽车的显示仪表需要知道汽车的转速及电动机的运行参数,那么显示仪表就需要从汽车的底层控制器取得数据。而这个数据的获得过程就是一个通信过程。类似的例子还有控制器通常是单片机或者PLC与变频器的通信。通信的双方需要遵守一套既定的规则也称为协议,这就好比我们人之间的对话,需要在双方都遵守一套语言语法规则才有可能达成对话。

通信协议又分为硬件层协议和软件层协议。硬件层协议主要规范了物理上的连线,传输电平信号及传输的秩序等硬件性质的内容。常用的硬件协议有串口,IIC, SPI, RS485, CAN和 USB。软件层协议则更侧重上层应用的规范,比如modbus协议。

好了,那这里我们就着重介绍51单片机的串口通信协议,以下简称串口。串口的6个特征如下。

(1)、物理上的连线至少3根,分别是Tx数据发送线,Rx数据接收线,GND共用地线。

(2)、0与1的约定。RS232电平,约定﹣5V至﹣25V之间的电压信号为1,﹢5V至﹢25V之间的电压信号为0 。TTL电平,约定5V的电压信号为1,0V电压信号为0 。CMOS电平,约定3.3V的电压信号为1,0V电压信号为0 。其中,CMOS电平一般用于ARM芯片中。

各类开关电源结构,你都了解吗?

接触过电源的同学都知道,电源分为两大类:线性电源和开关电源;线性电源一般是调整管工作在放大状态,发热量大,效率比较低,而且散热片体积一般都比较大,变压器体积相较于开关电源也比较大;除却这些不足,线性电源的稳压性能很高,纹波相较于开关电源也有一定的优势,所以线性电源一般使用在电磁干扰和电源纯净性要求很高的地方,比如可以使用于电容漏电检测装置或者需要高保真输出的放大器线路中。

而开关电源工作原理是让调整管在饱和和截至这两种状态下交替切换工作,所以发热量会相对小,效率高,可以使用小型高频变压器,这类电源一般使用于那些要求效率高体积小的地方,比如电脑电视机供电电源或者手机充电器等方面。

开关电源的作用主要是为了将输入电能转化为各种能为电子仪器设备提供电能的装置,主要分为四种大的类型:AC/DC变换;DC/DC变换;DC/AC变换;AC/AC变换。

我们常见的开关电源结构无非:反激式开关电源;正激式开关电源;半桥式开关电源;全桥式开关电源。

反激式开关电源结构如下图所示:

DC/DC开关电源中接地反弹的详解

作者:袁韶庚

电路接地在电路原理图中看起来很简单,但是,电路的实际性能是由其印制电路板(PCB)布局决定的。如果很好地理解“接地“引起的接地噪声的物理本质可提供一种减小接地噪声问题的直观认识。

接地反弹(Ground bounce)简称地弹会产生幅度为几伏的瞬态电压;最常见的是由磁通量变化引起的。传输电流的导线环路实际上构成了一个磁场,其磁场强度与电流成正比。磁通量与穿过环路面积和磁场强度乘积成正比。

磁通量∝磁场强度×环路面积

更精确的表示是:ΦB = BA cosφ

其中磁通量ΦB等于磁场强度B乘以穿过环路平面A和磁场方向与环路平面单位矢量夹角φ的余弦。

寄生电感怎么来的?

为什么要测量阻抗呢?阻抗能代表什么?阻抗测量的注意事项... ...很多人可能会带着一系列的问题来阅读本文。不管是数字电路工程师还是射频工程师,都在关注各类器件的阻抗。

信号完整性系列之“信号完整性简介”

本文主要介绍信号完整性是什么,信号完整性包括哪些内容,什么时候需要注意信号完整性问题?

信号完整性是指高速产品设计中由互连线引起的所有问题。包括以下几部分:

  • 时序

  • 噪声

  • 电磁干扰(EMI)

数据采样过程通常是由时钟信号的上升或者下降沿来触发的。数据必须及时的到达接收端并且在接收器件开始锁存之前稳定为一个非模糊的逻辑状态。任何数据的延迟或者波形的畸变将导致数据传输的失败。时序是高速系统的一切,信号时序取决于信号传播的物理长度引起的延迟,同时取决于抵达阀值时波形的形状。信号波形畸变的原因可能有很多的原因。主要的包括建立时间Tsu、保持时间Th、输出延时Tco、电路的线延迟Tdelay、时钟延时Tpd等。

“”

噪声问题具体来说有很多种形式,例如:振铃、反射、近端串扰、开关噪声、非单调性、地弹,电源反弹、衰减、容性负载、灵敏度、有损线等等。