cathy的博客

EMI的工程师指南第7部分 — 反激式转换器的共模噪声

作者:Timothy Hegarty

本系列文章的第 5 和第 6 部分介绍有助于抑制非隔离 DC-DC 稳压器电路传导和辐射电磁干扰 (EMI) 的实用指南和示例。当然,如果不考虑电隔离设计,DC-DC 电源 EMI 的任何处理方式都不全面,因为在这些电路中,电源变压器的 EMI 性能对于整体 EMI 性能至关重要。

特别是,了解变压器绕组间电容对共模 (CM) 发射噪声的影响尤其重要。共模噪声主要是由变压器绕组间寄生电容以及电源开关与底盘/接地端之间的寄生电容内的位移电流所导致的。DC-DC 反激式转换器已被广泛用作隔离电源,本文专门对其 CM 噪声进行了分析。

反激式拓扑

DC-DC 反激式电路 在工业与汽车市场领域应用广泛,由于可轻松配置成单个或多个输出,尤为适合低成本隔离式偏置轨。需要进行隔离的应用包括用于单相及三相电机驱动器的高压 MOSFET 栅极驱动器,以及工厂自动化和过程控制所用的回路供电传感器和可编程逻辑控制器。

EMI的工程师指南第6部分—采用离散FET设计的EMI抑制技术

简介

本系列文章的第 1 部分至第 5 部分中,介绍了抑制传导和辐射电磁干扰 (EMI) 的实用指南和示例,尤其是针对采用单片集成功率 MOSFET 的 DC/DC 转换器解决方案进行了详细介绍。在此基础上,本文继续探讨使用控制器驱动分立式高、低侧功率 MOSFET 对的 DC/DC 稳压器电路适用的 EMI 的抑制技术。使用控制器(例如图 1 所示同步降压稳压器电路中的控制器)的实现方案具有诸多优点,包括能够增强电流性能,改善散热性能,以及提高设计选择、元器件选型和所实现功能的灵活性。

“”
图 1:驱动功率 MOSFET Q1 和 Q2 的同步降压控制器的原理图

专家技术文章:电器设计中的电机控制趋势

作者: Patrick Heath

许多家用电器都包括一个或多个对其功能至关重要的电机。在不断提高市场份额的斗争中,新产品设计力求使其产品在竞争中脱颖而出。本文将探讨五个主要趋势,这些趋势塑造了电器电机控制的未来,电器电机控制适用于从 HVAC 系统到食品加工的所有领域。

能效

最大限度地降低电机和压缩机的功耗仍然是电器设计的大趋势之一。在很大程度上,美国环境保护局(EPA)家用电器能源之星计划推动着这一进程。这项计划会对产品进行评级并提供相应的标签,显示运行该设备所需的全年电量(kWh)。更高效的产品将获得能源之星评级,而这是许多消费者眼中的必备家电属性。许多其他国家/地区的政府提供类似的评级系统。

低端设备通常使用交流感应电机(ACIM)。使用变频驱动器(VFD)可以相对简单地控制这些电机。在这种技术中,三相正弦波形为电动机的绕组供电。电机的控制通过改变脉宽调制(PWM)占空比来实现,PWM 占空比通过其变化率来设置电压和频率。

EMI的工程师指南第5部分 — 采用集成 FET设计的EMI抑制技术

简介

本系列文章的第 1 部分至第 4 部分详细介绍了开关电源稳压器引起的传导发射和辐射发射,包括噪声产生机制、测量要求、频率范围、适用的测试限值、传播模式和寄生效应。在第5部分中,我将基于这一理论基础介绍抑制电磁干扰 (EMI) 的实用电路技术。

一般来说,电路原理图和印刷电路板 (PCB) 对于实现出色的 EMI 性能至关重要。第 3 部分重点强调通过谨慎的元器件选型和 PCB 布局尽量减小“功率回路”寄生电感的重要性。电源转换器集成电路 (IC) 的封装技术及其提供的 EMI 特定功能对此产生了巨大的影响。如第 2 部分所述,必须使用差模 (DM) 滤波方可将输入纹波电流的幅值充分降低至满足 EMI 合规性要求的水平。与此同时,如果需要抑制约 10MHz 以上的发射,通常使用共模 (CM) 滤波。在高频条件下,使用屏蔽也可以获得优异的结果。

本文主要介绍这些方面的内容,专门聚焦于带有集成功率 MOSFET 和控制器的转换器解决方案,提供抑制 EMI 的实例和应用指导。一般来说,转换器应在合理范围内超出传导 EMI 一定的裕度,为达到辐射限值预留空间。幸运的是,多数减少传导发射的步骤对于抑制辐射 EMI 同样有效。

EMI的工程师指南第4部分 — 辐射发射

简介

这篇系列文章的第 4 部分针对电源转换器(特别是工业和汽车领域使用的电源转换器)在开关时产生的辐射排放阐述了一些观点。

辐射电磁干扰 (EMI) 是一种在特定环境中动态出现的问题,与电源转换器内部的寄生效应、电路布局和元器件排布及其在运行时所处的整体系统相关。因此,从设计工程师的角度出发,辐射 EMI 的问题通常更具挑战性,复杂度更高,在系统主板使用多个 DC/DC 功率级时尤为如此。了解辐射 EMI 的基本机制以及测量要求、频率范围和相应限制条件至关重要。本文重点介绍这些方面的内容,展示辐射 EMI 测量装置以及两个 DC/DC 降压转换器的结果。

近场耦合

图 1 概略介绍了噪声源与受干扰电路之间基本 EMI 耦合模式特别是电感或 H 场耦合需要 di/dt 较高的时变电流源和两条磁耦合回路(或带有返回路径的平行导线)。另一方面,电容或 E 场耦合需要 dv/dt 较高的时变电压源和两块紧邻的金属板。这两种机制均属于近场耦合,其中的噪声源与受干扰电路非常接近,可使用近场嗅探器进行测量。

EMI的工程师指南第3部分 — 了解功率级寄生效应

DC/DC转换器中半导体器件的高频开关特性是主要的传导和辐射发射源。本文章系列的第2部分回顾了DC/DC 转换器的差模(DM)和共模(CM)传导噪声干扰。在电磁干扰(EMI)测试期间,如果将总噪声测量结果细分为DM 和CM噪声分量,可以确定DM和CM两种噪声各自所占的比例,从而简化 EMI 滤波器的设计流程。高频下的传导发射主要由 CM 噪声产生,该噪声的传导回路面积较大,进一步推动辐射发射的产生。

在第3部分中,我将全面介绍降压稳压器电路中影响 EMI 性能和开关损耗的感性和容性寄生元素。通过了解相关电路寄生效应的影响程度,可以采取适当的措施将影响降至最低并减少总体 EMI 信号。一般来说,采用一种经过优化的紧凑型功率级布局可以降低 EMI,从而符合相关法规,还可以提高效率并降低解决方案的总成本。

检验具有高转换率电流的关键回路

EMI的工程师指南第2部分—噪声传播和滤波

简介

高开关频率是在电源转换技术发展过程中促进尺寸减小的主要因素。为了符合相关法规,通常需要采用电磁干扰 (EMI) 滤波器,而该滤波器通常在系统总体尺寸和体积中占据很大一部分,因此了解高频转换器的 EMI 特性至关重要。

在本系列文章的第 2 部分,您将了解差模 (DM) 和共模 (CM) 传导发射噪声分量的噪声源和传播路径,从而深入了解 DC/DC 转换器的传导 EMI 特性。本部分将介绍如何从总噪声测量结果中分离出 DM/CM 噪声,并将以升压转换器为例,重点介绍适用于汽车应用的主要 CM 噪声传导路径。

DM 和 CM 传导干扰

DM和 CM 信号代表两种形式的传导发射。DM 电流通常称为对称模式信号或横向信号,而 CM 电流通常称为非对称模式信号或纵向信号。图 1 显示了同步降压和升压 DC/DC 拓扑中的 DM 和 CM 电流路径。Y 电容 CY1 和 CY2 分别从正负电源线连接到 GND,轻松形成了完整的 CM 电流传播路径。

PCB设计过孔载流能力分析

作为一个做设计的新手,在刚学PCB设计时,经常会由于电源通道处理不当(过孔数量打的不够、电源通道路径不够宽),而导致PCB设计不合格,生产出来的PCB报废。那么,我们在做PCB设计时电源通道处过孔需要怎么打哪个类型的?过孔数量要打多少个?本篇文章将给大家作一些详细的介绍。
  
过孔定义:
  
过孔也称金属化孔。在双面板和多层板中,为连通各层之间的印制导线,在各层需要连通的导线的交汇处钻上一个公共孔,即过孔。过孔的参数主要有孔的外径和钻孔尺寸。
  
一般我们常规的PCB板生产都是按IPC2级标准生产,生产的孔铜厚度一般为0.8mil到1mil左右(大家可以查一下IPC2级标准的具体内容)。生产时大家以为的生产出来的过孔是这个理想的情况(如下图示),孔的大小规整,孔铜厚度非常匀称:

“”

理想很丰满,不过现实却......实际我们生产出来的PCB上的过孔是这种情况(下图示,生产质量较好的情况下)。

99%工程师都踏入了直角走线这个误区

对于PCB设计工程师俩说,布线(Layout)是最基本的工作技能之一。走线的好坏将直接影响到整个系统的性能,而且大多数高速的设计理论也要最终经过Layout得以实现并验证。

由此可见,布线在高速PCB设计中是至关重要的。再布线的过程中,我们一直强调走线时不能出现直角,铜皮也尽量避免直角,那么下面我找到一些直角走线的基础理论和大家分享下。

直角走线一般是PCB布线中要求尽量避免的情况,也几乎成为衡量布线好坏的标准之一,那么直角走线究竟会对信号传输产生多大的影响呢?从原理上说,直角走线会使传输线的线宽发生变化,造成阻抗的不连续。其实不光是直角走线,顿角,锐角走线都可能会造成阻抗变化的情况。

直角走线的对信号的影响就是主要体现在三个方面:

1:拐角可以等效为传输线上的容性负载,减缓上升时间:
2:是阻抗不连续会造成信号的反射:
3:是直角尖端产生的EMI。

这几种电源的特性你很有必要了解一下!

我们在电子电路中,电源是不可缺少的,电源能为电路提供源源不断的能量,在电源的提供能量的作用下,电路才能正常进行工作。

独立电源是实际电源的理想化电路元件模型,能够主动对外电路提供能量或电信号的有源元件,独立电源包括独立电压源和独立电流源。

1、独立电压源

如果一个二端元件接到任意电路中,无论流经它的电流是多少,其两端电压始终保持给定的时间函数us(t)或定值Us,则该二端元件称为独立电压源,简称电压源。

u(t)=us(t)
电压源特性方程

也就是说电压源的两端的电压与外电路无关,电压源的两端电压是由它本身确定的,与流过它的电流也无关。

电压源为恒电压输出,其输出电压不随负载的变化而变化(理论上的定义)。而输出电流,随负载变化而变化。