开关电源

开关电源(Switched-Mode Power Supply,SMPS)是一种电源供应系统,通过快速切换电子开关器件(通常是晶体管或MOSFET)来将输入电压转换为稳定的输出电压。相对于线性电源,开关电源具有更高的效率和更小的体积,因此在各种应用中广泛使用

如何做好开关电源设计最重要的一步?(二)

在上一篇文章“如何做好开关电源设计最重要的一步?(一)”中,我们讲解了有关开关电源设计中印制电路板的制作、主要电流环路和开关电源内部接地的内容。本文中,我们将讲解开关电源设计中交流电压节点、滤波电容的并联以及开关电源PCB制作的最佳方法。

如何做好开关电源设计最重要的一步?(一)

印制电路板的制作

所有开关电源设计的非常重要的一步就是印制电路板(PCB)的线路设计。如果这部分设计不当,PCB也使电源工作不稳定,发射出过量的电磁干扰(EMI)。设计师的工作就是在理解电路工作过程的基础上,保证PCB设计合理。

这几种电源的特性你很有必要了解一下!

我们在电子电路中,电源是不可缺少的,电源能为电路提供源源不断的能量,在电源的提供能量的作用下,电路才能正常进行工作。

独立电源是实际电源的理想化电路元件模型,能够主动对外电路提供能量或电信号的有源元件,独立电源包括独立电压源和独立电流源。

1、独立电压源

如果一个二端元件接到任意电路中,无论流经它的电流是多少,其两端电压始终保持给定的时间函数us(t)或定值Us,则该二端元件称为独立电压源,简称电压源。

u(t)=us(t)
电压源特性方程

也就是说电压源的两端的电压与外电路无关,电压源的两端电压是由它本身确定的,与流过它的电流也无关。

电压源为恒电压输出,其输出电压不随负载的变化而变化(理论上的定义)。而输出电流,随负载变化而变化。

开关电源输出电感烧毁的5大原因

1、电感与开关电源输出功率不匹配。

线圈直流电阻大,导致满负荷或超负荷输出时,线圈温度持续升高直至烧毁。这种原因可能性有但又不大。

2、电源长时间超负荷运行(可能性较大)。

这将导致电感的线圈电阻损耗(直流)和磁芯涡流损耗(交流)加重,这两种损耗都变成热能,使电感温度快速升高直至烧坏。一般开关电源超负荷50%(即额定输出功率150%)时,保护电路才起作用。电源的额定输出功率,实际上也是极限输出功率,使用时不能超出,而且要留有一定余量。这样才能连续、安全、稳定运行。

3、电感质量有问题。

如果电感磁芯质量不好,当有较大高频交流分量通过电感时,就会在磁芯中产生很大的涡流损耗,使磁芯线圈温度持续升高直至烧坏。

4、第一滤波电容失效。

这将导致整流后的所有脉动交流成份全部加在电感上,使磁芯涡流损耗达到最大,温度快速升高使电感烧坏。此时,输出电压降低,靠负反馈提升电压,这样使输出脉动交流成份更大,磁芯涡流温升更快,导致恶性循环,最后电感烧毁。

5、电感线圈匝间短路。

光耦传输比(CTR)对开关电源的影响

CTR电流传输比(Current transfer ration)是用于描述光耦合器特性的参数,可表示为:

如何防止电源线引起电压波动?这个方案轻松搞定

当采用降压型或线性稳压电源时,一般是将电压调节为设定值来为负载供电。在一些应用中(例如,实验室电源需要采用较长电缆连接各种元件的电子系统),由于互连线上存在各种电压降,因此无法确保在所需位置点始终提供准确的稳压电压。

【详解】开关电源电路选择,方案选择指南(二)

12、拓扑选择

现在从拓扑一般性讨论到特定拓扑,假定你熟悉Buck类变换器,如图5所示。用它代替这一类拓扑,集中在每种拓扑实际的困难,并围绕这些困难解决的可能性。集中在能预先选择最好拓扑,使你不至于花费很多时间设计和调试。

a、Buck变换器

“图5:Buck变换器
图5:Buck变换器

限制

如一般考虑指出的,还要给Buck拓扑预先增加有许多限制

1、虽然一个Buck变换器概念上很清楚没有变压器,只有一个电感,这意味着不可能具有输入与输出隔离。

2、Buck仅能降低输入电压,如果输入小于要求的输出,变换器不能工作。

3、Buck仅有一个输出。如果你要由5V变为3.3V,这是好的。但除非愿意加第二个后继调节器,像线性稳压器,你可以看到在许多多路输出时这样应用的。

【详解】开关电源电路选择,方案选择指南(一)

决定拓扑选择的一个重要因素是输入电压和输出/输入比。图1示出了常用隔离的拓扑相对适用的电压范围。拓扑选择还与输出功率,输出电压路数,输出电压调节范围等有关。一般情况下,对于给定场合你可以应用多种拓扑,不可能说某种拓扑对某种应用是绝对地适用,因为产品设计还有设计 者对某种拓扑的经验、元器件是否容易得到、成本要求、对技术人员要求、调试设备和人员素质、生产工艺设备、批量、军品还是民品等等因素有关。因此要选择最好的拓扑,必须熟悉每种拓扑的长处和短处以及拓扑的应用领域。如果随便选择一个拓扑,可能一开始就宣布新电源设计的失败。

“图1:各种隔离拓扑应用电压范”
图1:各种隔离拓扑应用电压范

2、输入和输出

如果输出与输入共地,则可以采用非隔离的Buck,Boost共地变换器。这些电路结构简单,元器件少。如果输入电压很高,从安全考虑,一般输出需要与输入隔离。

开关电源的电磁干扰防制技术—辐射篇(二)

4.1、开关电源的辐射骚扰发生

图2是介绍在《开关电源的传导骚扰抑制问题》时用于说明电源中电磁骚扰产生与耦合途径的示意图。

“”

在开关电源工作时,初级逆变回路中的开关管Q处在高频通断状态,经由高频变压器T初级线圈、开关管Q和输入滤波电容C8形成了一个高频电流环路。这个环路的存在,就可能对空间形成电磁辐射。

开关电源在工作时,次级整流回路的D5也处于高频通断状态。由高频变压器次级线圈、整流二极管D5和滤波电容C9构成了高频开关电流的环路。由于有这个环路的存在,同样也有可能对空间形成电磁辐射。

另外,初级回路中变压器漏感的存在会加剧初级开关管电压波形的变化,进而影响开关电源经由开关管散热器向外传递的共模电流的高频成份,加剧辐射的共模发射。

而次级整流回路整流二极管在截止瞬间非常剧烈的电流变化,会在次级整流回路(因变压器漏感和二极管结电容存在的回路)中产生高频衰减振荡,加剧了对外的差模辐射。

开关电源的电磁干扰防制技术—辐射篇(一)

1、概述

尽管开关电源没有作为一个大类产品出现在我国的强制性产品认证目录中,但是在信息技术类设备提到的12种产品中,将计算机的内置电源和电源适配器与微型计算机、便携式计算机、计算机连用的显示设备、计算机连用的打印设备、多用途打印复印机、扫描仪、充电器、电脑游戏机、学习机、复印机、服务器、金融及贸易结算电子设备等一起列为强制认证的产品。

还有更多的电子设备,尽管在认证的实施细则中没有直接提到开关电源的问题,但是在它的认证中(这里指的是广义“认证”,有一些产品不需要3C认证,但有“入网”认证要求)都无一例外提到了要做电磁兼容性试验。由于开关电源作为这些设备中与电网连接的关键部件,所以这些试验都和开关电源的电磁兼容性有关。因此,无论开关电源是不是作为一个独立产品参加强制产品认证,但作为电子设备与电网连接的一个首当其冲的部件,只要这个产品需要参加认证,那么开关电源都必须经受电磁兼容性试验。