526095766_642的博客

开关电源 vs LDO电源的原理

我们来谈谈开关电源和LDO电源的一些原理上,指标上的区别对比,目的是分析它们之间的优缺点,从而找到如何在PCB设计上更好的进行选择使用。本来本人是想从直流电源的种类的选择进行切入,查阅了不少资料,发现对直流电源的分类不太明确,按类型分,按电路结构分,按拓扑分都不太一样。有的把它分为线性型,开关型,可控硅整流型和感应型;有的又把它分为化学电源,线性稳压电源和开关型稳压电源,有的分类干脆就分两种,线性型和开关型。

回到我们熟悉的PCB中,大的分类就比较明确了,主要有线性电源和开关电源,其中线性电源主要使用LDO电源,开关电源就是我们通常说的DC-DC电源。其实严谨来说,线性电源不能等同于LDO电源,LDO电源只是线性电源的其中一种,只不过它具有比较低的调整管压差而得名。

LDO,low dropout regulator,中文是低压差线性稳压器,它内部的一般结构如下图:

DSP系统中的EMC和EMI的解决方案

在任何高速数字电路设计中,处理噪音和电磁干扰(EMI)都是必然的挑战。处理音视讯和通讯讯号的数字讯号处理(DSP)系统特别容易遭受这些干扰,设计时应该及早理清潜在的噪音和干扰源,并及早采取措施将这些干扰降到最小。良好的规划将减少除错阶段中的大量时间和工作反复,可节省整体设计时间和成本。

如今,最快的DSP的内部频率速率高达数GHz,而发射和接收讯号的频率高达数百 MHz。这些高速开关讯号将会产生大量的噪音和干扰,将影响系统性能并产生电平很高的EMI。而DSP系统也变得更加复杂,如具有音视讯接口、LCD和无线通讯功能,以太网络和USB控制器、电源、振荡器、驱动控制以及其它各种电路,它们都将产生噪音,也都会受到相邻组件的影响。音视讯系统中特别容易产生这些问题,因为噪音会引起微妙的性能衰减,但这几乎不会显露在离散的数据之中。

重点是要从设计开始就着手解决噪音和干扰问题。许多设计第一次都没有通过联邦通讯委员会(FCC)的电磁兼容测试。如果在早期设计中,在低噪音和低干扰设计方法上花费一些时间,就会减少后续阶段的重新设计成本和产品上市时间的延迟。因此,从设计一开始,开发工程师就应该着眼于:

什么是自锁电路?自锁的原理分析,自锁电路的实物接线

今天我们来聊一下自锁电路,自锁电路是电气控制里入门级的一个电路,学会了这个电路,后期的一些复杂控制,比如:正反转控制、星三角、顺序启动等,里面都包含自锁控制,只要基础打牢靠,这些复杂控制理解起来也很简单。

主线路的接线相对来说比较简单,从电源引入,直接通过断路器-保护元件-接触器主触点-三相异步电机。

当我们使用单独一个按钮控制电路的时候,问题就出现了——按下启动按钮电路通断,松手后立刻断电。

“”

这样电路无法持续通电,不符合我们对电路的需求。怎么办呢?方法就是加入一个接触器:让接触器的线圈与按钮串联,常开触点与按钮并联。

“”

这样一来,当按下按钮后,接触器线圈通电,同时常开触点闭合。松开按钮后,虽然按钮断开了,但是常开触点依然接通。因此电路可以持续供电——这就是自锁。

DDR3 LAYOUT设计规则

DDR3的设计有着严格等长要求,归结起来分为两类(以64位的DDR3为例): 数据 (DQ、DQS、DQM):组内等长,误差控制在20MIL以内,组间不需要考虑等长;地址、控制、时钟信号:地址、控制信号以时钟作参考,误差控制在100MIL以内,Address、Control与CLK归为一组,因为Address、Control是以CLK的下降沿触发的由DDR控制器输出,DDR颗粒由CLK的上升沿锁存Address、Control总线上的状态,所以需要严格控制CLK与Address/Command、Control之间的时序关系,确保DDR颗粒能够获得足够的建立和保持时间。

关注等长的目的就是为了等时,绕等长时需要注意以下几点:

1、确认芯片是否有Pin-delay,绕线时要确保Pin-delay开关已经打开;

2、同组信号走在同层,保证不会因换层影响实际的等时;同样的换层结构,换层前后的等长要匹配,即时等长;不同层的传播延时需要考虑,如走在表层与走在内层,其传播速度是不一样的,所以在走线的时候需要考虑,表层走线尽量短,让其差别尽量小(这也是为什么Intel的很多GUIDE上面要求,表层的走线长度不超过250MIL等要求的原因);

从元器件选型到EMC测试要点,教您如何设计保护电路?

随着电子产品集成度、处理器速度、开关速率和接口速率的不断提升,电子产品ESD/EMI/EMC问题日益突出,尤其是当手持电子设备向轻薄小巧方向发展而且产品功能不断增加时,它们的输入/输出端口也随之增多,导致静电放电进入系统并干扰或损坏集成电路,电路保护是最容易出现问题的部分,也是容易被忽略的问题。

在通信、消费、军工、航空航天等领域,ESD往往是引起电路失效的罪魁祸首,而过流过压保护器件选择、传导辐射电磁干扰消除、EMC测试环境等问题成为工程师在设计时的难点,这些问题该怎么解决呢?

一、电路保护从元器件选型开始

电路保护元器件通常包括过压保护器件和过流保护器件两种,工程师需要针对各种元器件的特点和不同的应用类型进行选择。电子产品中,印制电路板的密度不断提高,半导体元件和集成电路的工作电压不断降低,生产商就运用表面贴装技术、片式多层陶瓷技术、阵列技术等新技术开发小尺寸、满足小电压大电流电路保护需求的产品;可以预见,未来电子电力技术不断发展,国内外电路保护元器件生产商将继续大力研发新产品、新技术,为各个应用领域提供合适的、安全的电路保护元器件。

电驱系统电磁兼容基础知识及测试方法

背景

说到电磁兼容,很多人第一反应肯定是电磁炮或者磁悬浮列车。其实电磁场的理论不仅在民用电子产品,军事上,尤其是航空航天的领域升是绝对的核心内容。下面举几个例子让大家看看什么是电磁兼容。

1982年,英阿马岛战争,英国某著名驱逐舰由于受到飞鱼导弹的攻击而沉没。其实当时英舰上已经装载了反导弹侦查系统,本来阿根廷进口的飞鱼就是法国的减装版本,抗电磁干扰能力极差。

可惜当时那位倒霉舰长正在使用无线电通讯系统与英国本部联系,这个无线电系统在工作时会需要关闭反导系统,因为反导系统工作时产生的电磁场会严重干扰舰上的无线电通讯。所以很不巧的事情发生了,老旧的飞鱼畅通无阻的击中了谢菲尔德。

概述

随着人们对电动汽车性能、安全、舒适性等各方面要求的不断提高,电动汽车上各种电子设备的功率越来越大,系统灵敏度越来越高,接受微弱信号的能力越来越强,电子产品所使用的的频带也越来越宽。因此,电子设备之间的相互影响也越来越大。

其中,作为电动汽车核心的具有大功率、大电流的电机驱动系统对其他电气电子设备的干扰影响尤为严重。

好文分享 | 谈谈反射的那些事儿

电报方程

分析电路时,当电路的尺寸远小于所传输信号对应的波长时,可采用电路理论,此时,电路上的电压和电流都认为是一致的;但是当电路尺寸与信号波长的大小可比拟时,就需采用传输线理论,这个时候,传输线就是一个分布参数网络,其上电压和电流的幅度和相位会随位置的不同而不同。

“”

以微带线为例,在点z处,截取一无限短长度△z,则该短传输线可以等效为集总器件。

上下两个导体本身可以等郊为电阻和电感串联,上下两导体之间的效应,可等效为电导和电容并联。

“”

则根据基尔霍夫电压定理与电流定理,可以分别得到:

S参数究竟是什么?详细为您解惑!

S参数究竟是什么?

现代高速模数转换器(ADC)已经实现了射频(RF)信号的直接采样,因而在许多情况下均无需进行混频,同时也提高了系统的灵活性和功能。

传统上,ADC信号和时钟输入都采用集总元件模型来表示。但是对于RF采样转换器而言,其工作频率已经增加至需要采用分布式表示的程度,那么原有的方法就不适用了。

本系列文章将从三个部分入手,说明如何将散射参数(也称为S参数)应用于直接射频采样结构的设计。

起决定性作用的S参数

S参数就是建立在入射微波与反射微波关系基础上的网络参数。它对于电路设计非常有用,因为可以利用入射波与反射波的比率来计算诸如输入阻抗、频率响应和隔离等指标。而且由于可以用矢量网络分析仪(VNA)直接测量S参数,因此无需知晓网络的具体细节。

图1所示的是一个双端口网络的例子,其入射波量为ax反射波量为bx,其中x是端口。在该讨论中,我们假设被测器件是线性网络,因此适合采用叠加法。

从头说起,车载照明系统中LED技术及其驱动

过去,常见的车用主流照明灯具大都是卤素灯。近年,LED作为新型照明光源具备优良性能,同时由于尺寸较小,便于自由组合,可以利用LED形成不同的形状和线条组合,以提升整体造型、增加舒适性。整车LED的应用正在迅猛增长,主要包括前照大灯,日行灯,转向灯,尾灯,内饰灯,阅读灯,氛围灯以及栅格灯等,LED正使用朝着普及化的方向发展。

以下就汽车应用中的LED灯珠及LED驱动芯片做基础介绍。

1、为什么使用LED作为光源?

主要原因:光效高,寿命长,响应速度快,体积小。

众所周知,LED有以下优势:

光效高:LED光效是卤素灯的5倍以上,体现在前大灯照明中即节能高效。

光效:光源所发出的总光通量(流明lm)与该光源所消耗的电功率(瓦W)的比值。

● LED:70-150 lm/W

● 卤素灯:10-20 lm/W

寿命长:与卤素灯相比,LED具有较长的使用寿命,适合汽车高可靠性的要求。

● LED:寿命可达50000小时以上。

制成车灯后, 寿命约在20000小时左右 ,可以覆盖汽车正常生命周期。

● 卤素灯:寿命约500-1200小时,在车灯系统中,3-5年需要更换一次。

从小偷到神偷的过程:焦耳小偷电路是什么?

当然这里的“焦耳小偷”不是真正意义上的小偷,正确来说应该是一个升压电路,此电路有个特点:低电压时也可以正常使用,将本来用不到的能量提取出来,彻底榨干电源的所有能量,获取额外能量的电路。

简单的焦耳小偷电路

焦耳小偷是一个非常简单的电路,一粒三极管、一个电阻和一个小变压器就可以组成焦耳小偷。它的工作电压可以很低,最低可以到0.7v,也就是三极管的开启电压。这也正是它的神奇之处。

“”

由于发光管的工作电压高于一节电池电压1.5V,所以一节电池不能使发光管工作。这个电路就是让一节电池驱动发光管工作用的。磁环上绕的两组线圈,电阻,三极管组成振荡电路,使三极管工作在持续导通和关断状态。电阻提供三极管基极偏流。发光管接在三极管的C、E脚之间,当三极管从导通状态关断时,磁环上的绕组会维持电流不变,从而产生高于电源电压1.5V的过冲电压,超过发光二极管的工作电压,使发光管发光。