同步整流

开关稳压器连载(5):改善同步整流式的轻负载时效率的功能

前项已经说明,同步式在轻负载时效率会因反向电流而降低。相信大家都希望难得效率高的同步式在轻负载时也能有高效率。尤其是最近,降低待机功耗已成为一大趋势。最轻负载时也即供电中电路处于关断状态的时。如果电源也能关断的话再好不过,只是必须持续给予微小功率,而此时效率低也是一大问题。

不连续模式的增加

同步整流式轻负载时效率改善的方法之一为轻负载时增加以不连续模式工作的功能。想法非常简单,也就是检测出电感电流下降至零附近后将下侧晶体管设为OFF使其不发生逆流(图43)。

“图43”
图43

只是,此方法并非完美无缺。此时,电感的晶体管侧的节点由于会呈现与开放相同状态,故输出电容器的放电须依赖负载电流,轻负载时电压下降的时间将变长。其结果,有时将导致开关速度下降,纹波电压増加。

此外,上侧晶体管不会ON到输出电压下降,故开关周期会改变。考虑到噪声的过滤时,噪声频率变动是问题所在,与效率之间也须进行权衡。

开关稳压器连载(4):同步整流型和异步整流型的区别

DC/DC转换器的非绝缘型降压开关稳压器有前项所说明的异步整流(二极管)式和同步整流式。异步整流式是较早被使用的方式,就开关稳压器而言电路简单但效率却超过80%左右。其后,笔记本电脑等电池驱动且需要较大功率的应用开始要求更高效率,于是可获得高效率的同步整流式开关稳压器用IC被陆续开发,控制或电路极为复杂的同步整流式变得容易设计,逐渐成为主流。同步整流式最大可以获得近95%的效率。

图39和40是两种方式的电路概述和工作。

【视频】电源设计小贴士39:同步整流带来的不仅仅是高效率

本视频我们将为大家介绍降压转换器以及如何使用同步整流器获得更高的效率。

同步整流可改善反激式电源的交叉调整率

当选择一个可从单电源产生多输出的系统拓扑时,

下一代同步整流控制技术增强电源运行参数

作者:Richard Chang

在当今的高性能的电源系统设计中,确保可靠性至关重要,因此高效的功能必须可以处理潜在的问题。同步整流电流反向就是这样一个问题。这发生在电容电流(寄生效应引起的)导致MOSFET在轻负载的情况下被过早激活时– 然后反向电流从输出电容流回同步整流器。这不仅导致系统能效受到严重影响,还可能会导致运行故障。

【设计秘笈】安森美半导体的高频准谐振反激式参考设计实现超高功率密度紧凑适配器

为提供更佳的用户体验,笔记本电脑及其适配器不断向小型化、高功率密度化方向发展,便于消费者外出时携带更方便,同时,还需具备高平均能效和极低待机功耗,以符合日趋严格的各种能效法规。如于2016年1月1日生效的欧盟CoC V5 Tier 2 规定,输出功率为45 W和65 W的AC-DC适配器平均能效需分别达到87.7%和89%,待机功耗分别低于75 mW和150 mW,并且还要求10%负载条件时的能效需分别达到77.7%和77.5%。电源设计工程师面临体积、能效和成本等多方面的设计挑战。