电路设计中用0欧电阻还是磁珠来隔离数字地和模拟地?

分为数字地和模拟地的原因

由于数字信号一般为矩形波,带有大量的谐波。如果电路板中的数字地与模拟地没有从接入点分开,数字信号中的谐波很容易会干扰到模拟信号的波形。当模拟信号为高频或强电信号时,也会影响到数字电路的正常工作。

模拟电路涉及弱小信号,但是数字电路门限电平较高,对电源的要求就比模拟电路低些。既有数字电路又有模拟电路的系统中,数字电路产生的噪声会影响模拟电路,使模拟电路的小信号指标变差,克服的办法是分开模拟地和数字地。

存在问题的根本原因是,无法保证电路板上铜箔的电阻为零,在接入点将数字地和模拟地分开,就是为了将数字地和模拟地的共地电阻降到最小。

电路设计中用0欧电阻还是磁珠来隔离数字地和模拟地?

模拟地和数字地单点接地,只要是地,最终都要接到一起,然后入大地。如果不接在一起就是"浮地",存在压差,容易积累电荷,造成静电。地是参考0电位,所有电压都是参考地得出的,地的标准要一致,故各种地应短接在一起。

人们认为大地能够吸收所有电荷,始终维持稳定,是最终的地参考点。虽然有些板子没有接大地,但发电厂是接大地的,板子上的电源最终还是会返回发电厂入地。

如果把模拟地和数字地大面积直接相连,会导致互相干扰。不短接又不妥,理由如下有四种方法解决此问题:

1. 用磁珠连接
2. 用电容连接,利用电容隔直通交的原理
3. 用电感连接,一般用几uH到数十uH
4. 用0欧姆电阻连接

电容隔直通交,造成浮地。电感体积大,杂散参数多,不稳定。下面主要讨论磁珠和0欧姆电阻。

磁 珠

磁珠采用在高频段具有良好阻抗特性的铁氧体材料烧结面成,专用于抑制信号线、电源线上的高频噪声和尖峰干扰,还具有吸收静电脉冲的能力。磁珠有很高的电阻率和磁导率,等效于电阻和电感串联,但电阻值和电感值都随频率变化。

它比普通的电感有更好的高频滤波特性,在高频时呈现阻性,所以能在相当宽的频率范围内保持较高的阻抗,从而提高调频滤波效果。

磁珠对高频信号才有较大阻碍作用,一般规格有100欧/100mMHZ,它在低频时电阻比电感小得多。铁氧体磁珠(Ferrite Bead)是目前应用发展很快的一种抗干扰组件,廉价、易用,滤除高频噪声效果显着。

铁氧体磁珠不仅可用于电源电路中滤除高频噪声(可用于直流和交流输出),还可广泛应用于其它电路,其体积可以做得很小。特别是在数字电路中,由于脉冲信号含有频率很高的高次谐波,也是电路高频辐射的主要根源,所以可在这种场合发挥磁珠的作用。

在电路中只要导线穿过它即可。当导线中电流穿过时,铁氧体对低频电流几乎没有什么阻抗,而对较高频率的电流会产生较大衰减作用。

磁珠的等效电路相当于带阻限波器,只对某个频点的噪声有显著抑制作用,使用时需要预先估计噪点频率,以便选用适当型号。对于频率不确定或无法预知的情况,磁珠不合。

0欧电阻

一般情况下,用0欧电阻是最佳选择:

● 可保证直流电位相等
● 单点接地,限制噪声
● 对所有频率的噪声都有衰减作用,0欧也有阻抗,而且电流路径狭窄,可以限制噪声电流通过

0欧电阻相当于很窄的电流通路,能够有效地限制环路电流,使噪声得到抑制。电阻在所有频带上都有衰减作用(0欧电阻也有阻抗),这点比磁珠强。

跨接时用于电流回路当分割电地平面后,造成信号最短回流路径断裂,此时,信号回路不得不绕道,形成很大的环路面积,电场和磁场的影响就变强了,容易干扰/被干扰。

在分割区上跨接0欧电阻,可以提供较短的回流路径,减小干扰。配置电路一般,产品上不要出现跳线和拨码开关。有时用户会乱动设置,易引起误会,为了减少维护费用,应用0欧电阻代替跳线等焊在板子上。

空置跳线在高频时相当于天线,用贴片电阻效果好。其他用途布线时跨线调试/测试用临时取代其他贴片器件作为温度补偿器件。

更多时候是出于EMC对策的需要。另外,0欧姆电阻比过孔的寄生电感小,而且过孔还会影响地平面(因为要挖孔)。

大尺寸的0欧电阻还可当跳线,中间可以走线还有就是不同尺寸0欧电阻允许通过电流不同,一般0603的1A,0805的2A。

所以不同电流会选用不同尺寸的还有就是为磁珠、电感等预留位置时,得根据磁珠、电感的大小还做封装,0603、0805等不同尺寸的都有了0欧姆电阻,一般用在混合信号的电路中,在这种电路中为了减小数字部分和模拟部分的相互干扰。

他们的电源地线都是分开布的,但在电源的入口点又需要连在一起,一般是通过0欧姆电阻连接的,这样既达到了数字地和模拟地间无电压差,又利用了0欧姆电阻的寄生电感滤除了数字部分对模拟部分的干扰。

本文转载自:网络
免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理(联系邮箱:cathy@eetrend.com)。

点击这里,获取更多关于应用和技术的有关信息
点击这里,获取更多工程师博客的有关信息

最新文章