PCB设计

PCB设计中的阻抗匹配与0欧电阻

1、阻抗匹配

阻抗匹配是指信号源或者传输线跟负载之间的一种合适的搭配方式。根据接入方式阻抗匹配有串行和并行两种方式;根据信号源频率阻抗匹配可分为低频和高频两种。

以太网EMC接口电路设计及PCB设计

我们现今使用的网络接口均为以太网接口,目前大部分处理器都支持以太网口。目前以太网按照速率主要包括10M、10/100M、1000M三种接口,10M应用已经很少,基本为10/100M所代替。目前我司产品的以太网接口类型主要采用双绞线的RJ45接口,且基本应用于工控领域,因工控领域的特殊性,所以我们对以太网的器件选型以及PCB设计相当考究。从硬件的角度看,以太网接口电路主要由MAC(Media Access Controlleroler)控制和物理层接口(Physical Layer,PHY)两大部分构成。大部分处理器内部包含了以太网MAC控制,但并不提供物理层接口,故需外接一片物理芯片以提供以太网的接入通道。面对如此复杂的接口电路,相信各位硬件工程师们都想知道该硬件电路如何在PCB上实现。

下图 1以太网的典型应用。我们的PCB设计基本是按照这个框图来布局布线,下面我们就以这个框图详解以太网有关的布局布线要点。

并行PCB设计的关键准则

随着它们承载的器件的复杂性提高,PCB设计也变得越来越复杂。相当长一段时间以来,电路设计工程师一直相安无事地独立进行自己的设计,然后将完成的电路图设计转给PCB设计工程师,PCB设计工程师独立完整自己的工作后,将Gerber文件再转给PCB制造厂。电路设计工程师、PCB设计工程师和PCB制造厂的工作都是相互隔离的,少有沟通。

PCB设计中BGA器件如何走线、布线?

SMT技术顺应了智能电子产品小型化,轻型化的发展潮流,为实现电子产品的轻、薄、短、小打下了基础。SMT技术在90年代也走向成熟的阶段。但随着电子产品向便携式/小型化、网络化方向的迅速发展,对电子组装技术提出了更高的要求,其中BGA(Ball Grid Array 球栅阵列封装)就是一项已经进入实用化阶段的高密度组装技术。

“”

BGA技术的研究始于60年代,最早被美国IBM公司采用,但一直到90年代初,BGA 才真正进入实用化的阶段。由于之前流行的类似QFP封装的高密管脚器件,其精细间距的局限性在于细引线易弯曲、质脆而易断,对于引线间的共平面度和贴装精度的要求很高。 BGA技术采用的是一种全新的设计思维方式,它采用将圆型或者柱状点隐藏在封装下面的结构,引线间距大、引线长度短。这样, BGA就消除了精细间距器件中由于引线问题而引起的共平面度和翘曲的缺陷。

BGA是PCB上常用的元器件,通常80﹪的高频信号及特殊信号将会由这类型的封装Footprint内拉出。因此,如何处理BGA 器件的走线,对重要信号会有很大的影响。

PCB线路设计制作术语 100条

1、Annular Ring 孔环
指绕接通孔壁外平贴在板面上的铜环而言。在内层板上此孔环常以十字桥与外面大地相连,且更常当成线路的端点或过站。在外层板上除了当成线路的过站之外,也可当成零件脚插焊用的焊垫。与此字同义的尚有 Pad(配圈)、 Land (独立点)等。

工程师最常遇到的PCB设计十大问题

在PCB设计中,工程师难免会面对诸多问题,一下总结了PCB设计中十大常见的问题,希望能对大家在PCB设计中能够起到一定的规避作用。

一、字符的乱放

1、字符盖焊盘SMD焊片,给印制板的通断测试及元件的焊接带来不便。

2、字符设计的太小,造成丝网印刷的困难,太大会使字符相互重叠,难以分辨。

二、图形层的滥用

1、在一些图形层上做了一些无用的连线,本来是四层板却设计了五层以上的线路,使造成误解。

2、设计时图省事,以Protel软件为例对各层都有的线用Board层去画,又用Board层去划标注线,这样在进行光绘数据时,因为未选Board层,漏掉连线而断路,或者会因为选择Board层的标注线而短路,因此设计时保持图形层的完整和清晰。

3、违反常规性设计,如元件面设计在Bottom层,焊接面设计在Top,造成不便。

三、焊盘的重叠

1、焊盘(除表面贴焊盘外)的重叠,意味孔的重叠,在钻孔工序会因为在一处多次钻孔导致断钻头,导致孔的损伤。

工程师必了解的PCB设计布局规则与技巧

PCB布局规则

1、在通常情况下,所有的元件均应布置在电路板的同一面上,只有顶层元件过密时,才能将一些高度有限并且发热量小的器件,如贴片电阻、贴片电容、贴片IC等放在底层。

直角走线为什么不可取?差分走线的优势是啥?蛇形走线如何走?——PCB设计走线的几点专家建议(ZT)

直角走线为什么要避免(对信号影响的三个方面)

直角走线的对信号的影响就是主要体现在三个方面:

一是拐角可以等效为传输线上的容性负载,减缓上升时间;

二是阻抗不连续会造成信号的反射;

三是直角尖端产生的EMI,到10GHz以上的RF设计领域,这些小小的直角都可能成为高速问题的重点对象。

PCB设计中单板上时钟需要注意哪些方面?

单板上时钟的注意事项,主要有以下几个方面可以考虑:

1、布局

a、时钟晶体和相关电路应布置在PCB的中央位置并且要有良好的地层,而不是靠近I/O接口处。不可将时钟产生电路做成子卡或者子板的形式,必须做在单独的时钟板上或者承载板上。

如下图所示,绿色框中部分下一层最好不要走线

PCB设计:降低噪声与电磁干扰的24个窍门

电子设备的灵敏度越来越高,这要求设备的抗干扰能力也越来越强,因此PCB设计也变得更加困难,如何提高PCB的抗干扰能力成为众多工程师们关注的重点问题之一。本文将介绍PCB设计中降低噪声与电磁干扰的一些小窍门。

下面是经过多年设计总结出来的,在PCB设计中降低噪声与电磁干扰的24个窍门:

(1) 能用低速芯片就不用高速的,高速芯片用在关键地方。