PCB

这次终于明白单面、双面、多层板了!

经常有网友咨询什么是单层板?双面板?多层板?

那么今天就给大家科普一下PCB相关的基础,帮助大家指点迷津,请往下看。

一、单面板(Single-Sided Boards)

我们刚刚提到过,在最基本的PCB上,零件集中在其中一面,导线则集中在另一面上。因为导线只出现在其中一面,所以我们就称这种PCB叫作单面板(Single-sided)。因为单面板在设计线路上有许多严格的限制(因为只有一面,布线间不能交叉而必须绕独自的路径),所以只有早期的电路

才使用这类的板子。

“”

二、双面板(Double-Sided Boards)

这种电路板的两面都有布线。不过要用上两面的导线,必须要在两面间有适当的电路连接才行。

PCB板中静电放电的设计与解决方法

来自人体、环境甚至电子设备内部的静电对于精密的半导体芯片会造成各种损伤,例如穿透元器件内部薄的绝缘层;损毁MOSFET和CMOS元器件的栅极;CMOS器件中的触发器锁死;短路反偏的PN结;短路正向偏置的PN结;熔化有源器件内部的焊接线或铝线。为了消除静电释放(ESD)对电子设备的干扰和破坏,需要采取多种技术手段进行防范。

在PCB板的设计当中,可以通过分层、恰当的布局布线和安装实现PCB的抗ESD设计。在设计过程中,通过预测可以将绝大多数设计修改仅限于增减元器件。通过调整PCB布局布线,能够很好地防范ESD。以下是一些常见的防范措施。

*尽可能使用多层PCB,相对于双面PCB而言,地平面和电源平面,以及排列紧密的信号线-地线间距能够减小共模阻抗和感性耦合,使之达到双面PCB的1/10到1/100。尽量地将每一个信号层都紧靠一个电源层或地线层。对于顶层和底层表面都有元器件、具有很短连接线以及许多填充地的高密度PCB,可以考虑使用内层线。

*对于双面PCB来说,要采用紧密交织的电源和地栅格。电源线紧靠地线,在垂直和水平线或填充区之间,要尽可能多地连接。一面的栅格尺寸小于等于60mm,如果可能,栅格尺寸应小于13mm。

*确保每一个电路尽可能紧凑。

*尽可能将所有连接器都放在一边。

PCB板设计阻抗匹配、零欧姆电阻的作用你是否完全掌握?

阻抗匹配

阻抗匹配是指信号源或者传输线跟负载之间的一种合适的搭配方式。

根据接入方式阻抗匹配有串行和并行两种方式;根据信号源频率阻抗匹配可分为低频和高频两种。

资料下载:PCB工艺设计规范

1. 目的

规范产品的PCB 工艺设计,规定PCB 工艺设计的相关参数,使得PCB 的设计满足可生产性、可测试性、安规、EMC、EMI 等的技术规范要求,在产品设计过程中构建产品的工艺、技
术、质量、成本优势。

2. 适用范围

PCB中的通孔设计规则

通孔传统上被分为两组:电镀的(支持的)孔和非电镀的(不支持的)孔。“支持的”指孔壁上的电镀。非电镀的或不支持的孔也许有或者没有焊盘,例如安装孔和无孔壁电镀。这是制造上的术语,但是对于设计而言,孔应当分为被焊接和不被焊接的两类。

对于这些类别中的每一个,被电镀的和不被电镀的分类应当被标识出来。

1、被焊接的

连载二:射频电路设计PCB审查checklist,值得收藏!

一、布局注意事项

(1) 结构设计要求 在 PCB 布局之前需要弄清楚产品的结构。

结构需要在 PCB 板上体现出来。比如腔壳的外边厚度大小,中间隔腔的厚度大小, 倒角半径大小和隔腔上的螺钉大小等等(换句话说,结构设计是根据 完成后的 PCB 上所画的轮廓(结构部分)进行具体设计的)。一般情 况,外边腔厚度为 4mm;内腔宽度为 3mm;点胶工艺的为 2mm;倒角 半径 2.5mm。以 PCB 板的左下角为原点,隔腔需在栅格 0.5 的整数倍, 最少需要做到栅格为 0.1 的整数倍。这样有利于结构加工商进行加工, 误差控制比较精确些。当然,这需要根据客户的要求来设计。

下图所示为 PCB 设计完成后的结构轮廓图:

连载一:射频电路设计PCB审查checklist,值得收藏!

大类

小类

编号

要素描述

通用

技术博客 I 高速PCB Layout设计指南

随着工业上对新型自动化、消费者对无线设备、医疗和航空航天等领域对技术发展的需求日益增长,这些领域对PCB的需求也在不断升级。如果我们能紧跟需求,设计出更小且更复杂的电路板,便能实现PCB设计工具市场的增长。对于PCB设计人员而言,这意味着在设计方面所面临的新挑战比以往任何时候都多。

高速PCB的layout设计基于我们作为PCB设计人员已经掌握的技能。元器件的布局仍需要符合可制造性设计以及测试要求,而走线规划仍将采用行业公认的宽度和间距设计规则。然而,本文提出了我们都需要熟悉的一些更严格的高速电路相关要求和设计实践。我们将对其中部分进行详细说明,帮助您快速理解高速layout设计。

“”

从原理图开始

PCB叠层设计要遵从哪两个规矩?

总的来说叠层设计主要要遵从两个规矩:

1.每个走线层都必须有一个邻近的参考层(电源或地层)。

2.邻近的主电源层和地层要保持最小间距,以提供较大的耦合电容。

“”

下面列出从两层板到八层板的叠层来进行示例讲解:

一、单面PCB板和双面PCB板的叠层

对于两层板来说,由于板层数量少,已经不存在叠层的问题。控制EMI辐射主要从布线和布局来考虑;
单层板和双层板的电磁兼容问题越来越突出。造成这种现象的主要原因就是因信号回路面积过大,不仅产生了较强的电磁辐射,而且使电路对外界干扰敏感。要改善线路的电磁兼容性,最简单的方法是减小关键信号的回路面积。

关键信号:从电磁兼容的角度考虑,关键信号主要指产生较强辐射的信号和对外界敏感的信号。能够产生较强辐射的信号一般是周期性信号,如时钟或地址的低位信号。对干扰敏感的信号是指那些电平较低的模拟信号。

单、双层板通常使用在低于10KHz的低频模拟设计中:

PCB叠层时不考虑EMC,做完只能 “太南了”

确定最佳印刷电路板布局的关键之一是了解信号返回电流的实际流动方式和方向,大多数设计人员只考虑信号电流的流向(显然是在信号迹线上),而忽略了返回电流所经过的路径。

为了解决上述问题,我们必须了解高频电流是如何在导体中流动的。

首先,最低阻抗的返回路径是在信号迹线正下方的平面上(不管这是电源还是地平面),因为这提供了最低的电感路径,这也产生了最小的电流环路面积可能。

其次,由于“集肤效应”,高频电流不能穿透导体,因此高频时导体中的所有电流都是表面电流。

这种影响将发生在所有频率超过30MHz的1盎司铜层,因此,PCB中的平面实际上是两个导体而不是一个导体。

在平面的上表面会有电流,在平面的下表面会有不同的电流或者根本没有电流。

当现有返回路径出现不连续时,就会出现严重的EMC问题。这些不连续性导致回流电流在更大的回路中流动,从而增加了电路板的辐射,增加了相邻线路之间的串扰,造成波形失真。

此外,在恒阻抗pcb板中,返回路径的不连续性会改变线路的特性阻抗。

下面讨论最常见的返回路径不连续。