EMI

电源噪声测试的陷阱

作者:David Maliniak

当前的电路和系统使用1.2V甚至更低的供电电压运行,即使电压的微小变化也会产生误码、抖动、错误切换以及与瞬态相关的问题,让我们难以解决。

为什么开关电源灌胶后EMI变差?原因在这!

一、为什么灌胶?对胶的要求怎样?

这说起来简单,有可能是客户要求灌胶,有可能是看到别人在灌胶也在找胶灌。肯定的说,灌封胶主要有以下几大目的和要求:

原创深度 | 工业4.0:听不到的噪声可能是最大的问题(二)

在上一篇文章“工业4.0:听不到的噪声可能是最大的问题(一)”中,我们介绍了工业4.0中EMC的影响和EMC标准。在本文中,我们将对如何缓解EMC问题进行详细介绍。

原创深度 | 工业4.0:听不到的噪声可能是最大的问题(一)

减小EMI,提高密度和集成隔离是2019年电源发展的三大趋势

毫无疑问,电源调节、传输和功耗都是日益重要的话题。人们期望智能产品功能日趋多样、性能更强大和外观更加酷炫。但是,所有电子产品都离不开电源,而且随着功能的丰富,业界看到了关注电源相关问题的重要意义。展望2019年最受广泛关注的三大问题是:密度、EMI和隔离(信号和电源)。

实现更高的密度:缩小电源管理所占的空间

设计开关电源时防止EMI需掌握的22个措施

作为工作于开关状态的能量转换装置,开关电源的电压、电流变化率很高,产生的干扰强度较大;干扰源主要集中在功率开关期间以及与之相连的散热器和高平变压器,相对于数字电路干扰源的位置较为清楚;开关频率不高(从几十KHz和几MHz),主要的干扰形式是传导干扰和近场干扰;而印刷线路板(PCB)走线通常采用手工布线,随意性更大,这样PCB分布参数提取难度加大,同时近场干扰估算也更困难。

ESD静电防范常见问题及解决方案

ESD静电防范常见问题及解决方案静电是人们非常熟悉的一种自然现象。静电的许多功能已经应用到军工或民用产品中,如静电除尘、静电喷涂、静电分离、静电复印等。然而,静电放电 ESD(Electro-Static Discharge)却又成为电子产品和设备的一种危害,造成电子产品和设备的功能紊乱甚至部件损坏。

解决EMI之传导干扰的八大绝招

电磁干扰EMI中电子设备产生的干扰信号是通过导线或公共电源线进行传输,互相产生干扰称为传导干扰。传导干扰给不少电子工程师带来困惑,如何解决传导干扰?找对方法,你会发现,传导干扰其实很容易解决,只要增加电源输入电路中EMC滤波器的节数,并适当调整每节滤波器的参数,基本上都能满足要求,第七届电路保护与电磁兼容研讨会主办方总结八大对策,以解决对付传导干扰难题。

初次级“Y电容”到底放哪个位置更好?

Y电容,是我们开关电源工程师每天都要接触到的一个非常关键的元器件,它对EMI的贡献是相当的大的,但是它是一个较难把控的元器件,原理上并没有那么直观易懂,在EMI传播路径中需要联系到很多的寄生参数才能够去分析。

我们都知道开关电源变压器的原副边都跨接了一个Y电容,很多时候这个Y电容必须要,没了它EMI就过不了。此Y电容的摆放位有多种方法,到底怎么接效果才是最好的?

在做EMI实验时,往往Y电容对共模干扰的高频段影响比较大,所以我们首先要找到开关电源中的高频干扰源。最常见最熟悉的高频干扰源有两个,以反激为例,一是原边的开关MOS,二是副边的整流二极管,如下图

“”

高频振铃1:MOS管关断时的振荡,高频振铃2:副边整流二极管关断时的振荡。

首先分析一下高频干扰1(原边开关MOS管的干扰),干扰源为Q1,如下图

基于移相控制的多路输出降压变换器提升EMI性能的PCB布局优化

作者:德州仪器Gavin Wang