Pick这个不轻易外传的EMC整改方法~

cathy的头像

1、电容的滤波作用

“”

“”

即频率f越大,电容的阻抗Z越小。

当低频时,电容C由于阻抗Z比较大,有用信号可以顺利通过;

当高频时,电容C由于阻抗Z已经很小了,相当于把高频噪声短路到GND上去了。

2、电容滤波在何时会失效

整改中常常会使用电容这种元器件进行滤波,往往有“大电容滤低频,小电容滤高频”的说法。

以常见的表贴式MLCC陶瓷电容为例,进行等效模型如下:

以太网EMC接口电路设计及PCB设计

cathy的头像

我们现今使用的网络接口均为以太网接口,目前大部分处理器都支持以太网口。目前以太网按照速率主要包括10M、10/100M、1000M三种接口,10M应用已经很少,基本为10/100M所代替。目前我司产品的以太网接口类型主要采用双绞线的RJ45接口,且基本应用于工控领域,因工控领域的特殊性,所以我们对以太网的器件选型以及PCB设计相当考究。从硬件的角度看,以太网接口电路主要由MAC(Media Access Controlleroler)控制和物理层接口(Physical Layer,PHY)两大部分构成。大部分处理器内部包含了以太网MAC控制,但并不提供物理层接口,故需外接一片物理芯片以提供以太网的接入通道。面对如此复杂的接口电路,相信各位硬件工程师们都想知道该硬件电路如何在PCB上实现。

下图 1以太网的典型应用。我们的PCB设计基本是按照这个框图来布局布线,下面我们就以这个框图详解以太网有关的布局布线要点。

电压及电流的瞬态干扰是造成电子电路及设备损坏的主要原因,常给人们带来无法估量的损失。这些干扰通常来自于电力设备的起停操作、交流电网的不稳定、雷电干扰及静电放电等,瞬态干扰几乎无处不在、无时不有,使人感到防不胜防。幸好,一种高效能的电路保护器件TVS的出现使瞬态干扰得到了有效抑制。

TVS(TRANSIENT VOLTAGE SUPPRESSOR)或称瞬变电压抑制二极管是在稳压管工艺基础上发展起来的一种新产品,其电路符号和普通稳压二极管相同,外形也与普通二极管无异,当TVS管两端经受瞬间的高能量冲击时,它能以极高的速度(最高达1*10-12秒)使其阻抗骤然降低,同时吸收一个大电流,将其两端间的电压箝位在一个预定的数值上,从而确保后面的电路元件免受瞬态高能量的冲击而损坏。

TVS的特性及其参数

“图1
图1 TVS特性曲线

1.TVS的特性

如果用图示仪观察TVS的特性,就可得到图1中左图所示的波形。如果单就这个曲线来看,TVS管和普通稳压管的击穿特性没有什么区别,为典型的PN结雪崩器件。

但这条曲线只反映了TVS特性的一个部分,还必须补充右图所示的特性曲线,才能反映TVS的全部特性。这是在双踪示波器上观察到的TVS管承受大电流冲击时的电流及电压波形。

图中曲线1是TVS管中的电流波形,它表示流过TVS管的电流由1mA突然上升到峰值,然后按指数规律下降,造成这种电流冲击的原因可能是雷击、过压等。曲线2是TVS管两端电压的波形,它表示TVS中的电流突然上升时,TVS两端电压也随之上升,但最大只上升到VC值,这个值比击穿电压VBR略大,从而对后面的电路元件起到保护作用。

TVS的参数

“图2
图2 TVS特性及参数

A. 击穿电压(VBR):TVS在此时阻抗骤然降低,处于雪崩击穿状态。

B. 测试电流(IT):TVS的击穿电压VBR在此电流下测量而得。一般情况下IT取1MA。

C. 反向变位电压(VRWM):TVS的最大额定直流工作电压,当TVS两端电压继续上升,TVS将处于高阻状态。

D. 最大反向漏电流(IR):在工作电压下测得的流过TVS的最大电流。

E. 最大峰值脉冲电流(IPP):TVS允许流过的最大浪涌电流,它反映了TVS的浪涌抑制能力。

F. 最大箝位电压(VC):当TVS管承受瞬态高能量冲击时,管子中流过大电流,峰值为IPP,端电压由VRWM值上升到VC值就不再上升了,从而实现了保护作用。浪涌过后,随时间IPP以指数形式衰减,当衰减到一定值后,TVS两端电压由VC开始下降,恢复原来状态。最大箝位电压VC与击穿电压VBR之比称箝位因子Cf,表示为Cf= VC /VBR,一般箝位因子仅为1.2~1.4。

G. 峰值脉冲功率(PP):PP按峰值脉冲功率的不同TVS分为四种,有500W、600W、1500W和5000W。最大峰值脉冲功率:最大峰值脉冲功率为:PN=VC·IPP。显然,最大峰值脉冲功率愈大,TVS所能承受的峰值脉冲电流IPP愈大;另一方面,额定峰值脉冲功率PP确定以后,所TVS能承受的峰值脉冲电流IPP,随着最大箝位电压VC的降低而增加。TVS最大允许脉冲功率除了和峰值脉冲电流和箝位电压有关外,还和脉冲波形、脉冲持续时间和环境温度有关。

TVS所能承受的瞬时脉冲峰值可达数百安培,其箝位响应时间仅为1*10-12 秒;TVS所允许的正向浪涌电流,在 25℃,1/120秒的条件下,也可达50-200安培。一般地说,TVS所能承受的瞬时脉冲是不重复的脉冲。而实际应用中,电路里可能出现重复性脉冲。

TVS器件规定,脉冲重复率比(脉冲持续时间和间歇时间之比)为0.01%。如不符合这一条件,脉冲功率的积累有可能使TVS烧毁。电路设计人员应注意这一点。TVS的工作是可靠的,即使长期承受不重复性大脉冲的高能量的冲击,也不会出现"老化"问题。试验证明,TVS安全工作于10000次脉冲后,其最大允许脉冲功率仍为原值的80%以上。

TVS主要用于对电路元件进行快速过电压保护。它能"吸收"功率高达数千瓦的浪涌信号。TVS具有体积小、功率大、响应快、无噪声、价格低等诸多优点,它的应用十分广泛,如:家用电器;电子仪器;仪表;精密设备;计算机系统;通讯设备;RS232、485及 CAN等通讯端口;ISDN的保护;I/O端口;IC电路保护;音、视频输入;交、直流电源;电机、继电器噪声的抑制等各个领域。它可以有效地对雷电、负载开关等人为操作错误引起的过电压冲击起保护作用。

TVS的选用方法

1.确定待保护电路的直流电压或持续工作电压。如果是交流电,应计算出最大值,即用有效值*1.414。

2.TVS的反向变位电压即工作电压(VRWM)--选择TVS的VRWM等于或大于上述步骤1所规定的操作电压。这就保证了在正常工作条件下TVS吸收的电流可忽略不计,如果步骤1所规定的电压高于TVS的VRWM ,TVS将吸收大量的漏电流而处于雪崩击穿状态,从而影响电路的工作。

3.最大峰值脉冲功率:确定电路的干扰脉冲情况,根据干扰脉冲的波形、脉冲持续时间,确定能够有效抑制该干扰的TVS峰值脉冲功率。

4.所选TVS的最大箝位电压(VC)应低于被保护电路所允许的最大承受电压。

5.单极性还是双极性-常常会出现这样的误解即双向TVS用来抑制反向浪涌脉冲,其实并非如此。双向TVS用于交流电或来自正负双向脉冲的场合。TVS有时也用于减少电容。如果电路只有正向电平信号,那麽单向TVS就足够了。TVS操作方式如下:正向浪涌时,TVS处于反向雪崩击穿状态;反向浪涌时,TVS类似正向偏置二极管一样导通并吸收浪涌能量。在低电容电路里情况就不是这样了。应选用双向TVS以保护电路中的低电容器件免受反向浪涌的损害。

6.如果知道比较准确的浪涌电流IPP,那么可以利用VC来确定其功率,如果无法确定功率的大概范围,一般来说,选择功率大一些比较好。

本文转载自:电子工程世界
声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有,如涉及侵权,请联系小编邮箱:cathy@eetrend.com 进行处理。

点击这里,获取更多关于的有关信息

围观 35

1、屏蔽的商业必要性

笔者提出的一个重要概念:

一个项目在计划阶段就要考虑屏蔽问题,这样花费在屏蔽措施上的成本才会最低。

若等到问题暴露出来再去查漏补缺,往往需要付出相当大的代价。

屏蔽措施往往带来费用和仪器重量的增加,若能以其他EMC方式加以解决,就尽量减少屏蔽。(言下之意屏蔽是最后一招)

对于PCB应注意以下两点:

1、使导线及元器件尽量靠近一块大的金属板(这个金属板不是指屏蔽体)

2、使电气部件及线路尽量靠近地层(减少层间信号的电磁干扰、地层可以吸收部分干扰 )这样,即使是需要加屏蔽,也可以降低对屏蔽效能(SE shiedling effectiveness)的需求。

2、屏蔽的概念

屏蔽相当于一个滤波器,放置于电磁波的传播路径上,对其中的一部分频段形成高阻抗。阻抗比越大,屏蔽效能越好。

对于一般金属,0.5mm的厚度就能对1MHz的电磁波产生较好的屏蔽效果,对100MHz能有非常好的屏蔽效果,问题在于薄层金属屏蔽对1MHz以下或孔隙来说,屏蔽效果就不行了,本文重点介绍这方面。

3、大的间距、矩形屏蔽会更好

(1) 电路之间、屏蔽之间更大的间距能够减少相互干扰;

(2) 矩形(或不规则)的屏蔽外形,能够尽量避免频率共振;正方形的外壳往往容易引起共振;

但总的来说,电路板一般位于屏蔽体内,其元器件、线路等都会改变预期的共振频率点,所以不必太操心。

4、趋肤效应

“”

趋肤深度

工程上定义从表面到电流密度下降到表面电流密度的0.368(即1/e)的厚度为趋肤深度或穿透深度Δ:

“”

式中:

μ-导线材料的磁导率;

γ=1/ρ-材料的电导率;

k-材料电导率(或电阻率)温度系数;

“”

上图:不同频率下三种金属的趋肤效应深度(频率越高,深度越浅,越趋肤);趋肤效应以传导的角度看,是希望趋肤深度深的,那表示导线的利用率高;但是对于屏蔽,是希望趋肤深度浅的,这样就能以较薄的金属屏蔽更多的电磁频段;50Hz的趋肤深度5~15mm,很难屏蔽……

用于屏蔽的金属应有良好的导电及导磁性能,厚度根据干扰的最低频率所产生的趋肤深度来定。一般1mm的低碳钢板或者1μm的镀锌层就能满足一般的应用。(这也是实际中常看到机箱壁上镀锌的原因)

5、孔隙

如果屏蔽体的整个壳体是无缝无孔的,那么对于30MHz的电磁波来说,要达到100dB的衰减效果不是难事。问题就在于他们不是无缝无孔的:

“”

在一个完美的屏蔽壳体上开一个洞,相当于构成一个半波共振缝隙天线,屏蔽效能SE与孔的最大尺寸d、电磁波波长λ关系如下:

“”

那么对于之前提到的30MHz,波长10m,假设有一个USB口(孔径对角线尺寸10mm),换算下来SE为54dB,d越大,SE越小。

我们常用到的电磁波频段:

“”

我们在常规应用中制造出的干扰及谐波频段:

“”

孔隙、平率与屏蔽效能的大致关系:

“”

要达到40dB的SE,通常需要用导体垫圈、弹簧夹指来进行密封,注意内部元件与屏蔽罩的间距、数据总线与开孔和缝隙之间的距离。

还要注意,当屏蔽体中有电流,且电流的前进方向上有孔缝挡路,迫使电流绕行时,将引起孔缝类似天线而发射磁场,通过孔缝变化的电压产生磁场。

6、低频磁场的屏蔽

采用高磁导率的合金材料(如非晶合金、坡莫合金),按一定规格制成屏蔽罩,可大幅度减小磁场影响。

7、截至波导

“”

8、垫圈

采用良导体,用于填缝,能承受一定的挤压变形,抗腐蚀、经久耐用.

“”

“”

9、可视组件的屏蔽

“”

10、通风孔的屏蔽

将通风孔做成两种形式:

(1)金属网格(类似蜂窝铝板)

(2) (截至)波导

11、用喷漆或电镀的塑料

因为开模塑料美观轻便,所以时常使用,对这种情况,一般在塑料杯面喷涂导电材料,因为导电层厚度不可能太厚(微米级),实际效果不怎么样。

对于二类电器(class II),还可能增加静电放电(ESD)的可能性。

二类电器:这类电器采用双重绝缘或加强绝缘,没有接地要求。

12、非金属屏蔽

如碳纤维或导电聚合物(导电塑料),但是无论如何其SE都不及金属的好。

13、屏蔽罩的安装

“”

14、板级屏蔽

“”

本文转载自:电源研发精英圈
声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有,如涉及侵权,请联系小编邮箱:
cathy@eetrend.com 进行处理。

围观 21

在PCB的EMC设计考虑中,首先涉及的便是层的设置; 单板的层数由电源、地的层数和信号层数组成;在产品的EMC设计中,除了元器件的选择和电路设计之外,良好的PCB设计也是一个非常重要的因素。
  
PCB的EMC设计的关键,是尽可能减小回流面积,让回流路径按照我们设计的方向流动。而层的设计是PCB的基础,如何做好PCB层设计才能让PCB的EMC效果最优呢?
  
PCB层的设计思路:
  
PCB叠层EMC规划与设计思路的核心就是合理规划信号回流路径,尽可能减小信号从单板镜像层的回流面积,使得磁通对消或最小化。
  
1、单板镜像层
  
镜像层是PCB内部临近信号层的一层完整的敷铜平面层(电源层、接地层)。主要有以下作用:
  
(1)降低回流噪声:镜像层可以为信号层回流提供低阻抗路径,尤其在电源分布系统中有大电流流动时,镜像层的作用更加明显。
  
(2)降低EMI:镜像层的存在减少了信号和回流形成的闭合环的面积,降低了EMI;
  
(3)降低串扰:有助于控制高速数字电路中信号走线之间的串扰问题,改变信号线距镜像层的高度,就可以控制信号线间串扰,高度越小,串扰越小;
  
(4)阻抗控制,防止信号反射。
  
2、镜像层的选择
  
(1)电源、地平面都能用作参考平面,且对内部走线有一定的屏蔽作用;
  
(2)相对而言,电源平面具有较高的特性阻抗,与参考电平存在较大的电势差,同时电源平面上的高频干扰相对比较大;
  
(3)从屏蔽的角度,地平面一般均作了接地的处理,并作为基准电平参考点,其屏蔽效果远远优于电源平面;
  
(4)选择参考平面时,应优选地平面,次选电源平面。
   
磁通对消原理:
  
根据麦克斯韦方程,分立的带电体或电流,它们之间的一切电的及磁的作用都是通过它们之间的中间区域传递的,不论中间区域是真空还是实体物质。在PCB中磁通总是在传输线中传播的,如果射频回流路径平行靠近其相应的信号路径,则回流路径上的磁通与信号路径上的磁通是方向相反的,这时它们相互叠加,则得到了通量对消的效果。
    
磁通对消的本质就是信号回流路径的控制,具体示意图如下:
  

“”

如何用右手定则来解释信号层与地层相邻时磁通对消效果,解释如下:

“”

(1)当导线上有电流流过时,导线周围便会产生磁场,磁场的方向以右手定则来确定。

(2)当有两条彼此靠近且平行的导线,如下图所示,其中一个导体的电流向外流出,另一个导体的电流向内流入,如果流过这两根导线的电流分别是信号电流和它的回流电流,那么这两个电流是大小相等方向相反的,所以它们的磁场也是大小相等,而方向是相反的,因此能相互抵消。
    
六层板设计实例

“”

1、对于六层板,优先考虑方案3;

“”

分析:
  
(1)由于信号层与回流参考平面相邻,S1、S2、S3相邻地平面,有最佳的磁通抵消效果,优选布线层S2,其次S3、S1。
  
(2)电源平面与GND平面相邻,平面间距离很小,有最佳的磁通抵消效果和低的电源平面阻抗。
  
(3)主电源及其对应的地布在4、5层,层厚设置时,增大S2-P之间的间距,缩小P-G2之间的间(相应缩小G1-S2层之间的间距),以减小电源平面的阻抗,减少电源对S2的影响。
  
2、在成本要求较高的时候,可采用方案1;
  

“”

分析:
  
(1)此种结构,由于信号层与回流参考平面相邻,S1和S2紧邻地平面,有最佳的磁通抵消效果;
  
(2)电源平面由于要经过S3和S2到GND平面,差的磁通抵消效果和高的电源平面阻抗;
  
(3)优选布线层S1、S2,其次S3、S4。
  
3、对于六层板,备选方案4
 

“”

分析:
  
对于局部、少量信号要求较高的场合,方案4比方案3更适合,它能提供极佳的布线层S2。
  
4、最差EMC效果,方案2

“”

分析:
  
此种结构,S1和S2相邻,S3与S4相邻,同时S3与S4不与地平面相邻,磁通抵消效果差。 
  
总结
  
PCB层设计具体原则:
  
(1)元件面、焊接面下面为完整的地平面(屏蔽);
  
(2)尽量避免两信号层直接相邻;
  
(3)所有信号层尽可能与地平面相邻;
  
(4)高频、高速、时钟等关键信号布线层要有一相邻地平面。

本文转载自:网络
声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有,如涉及侵权,请联系小编邮箱:
cathy@eetrend.com 进行处理。

围观 10

滤波电容器、共模电感、磁珠在EMC设计电路中是常见的身影,也是消灭电磁干扰的三大利器。对于这这三者在电路中的作用,相信还有很多工程师搞不清楚。本文从设计中,详细分析了消灭EMC三大利器的原理。

三大利器之滤波电容器

尽管从滤除高频噪声的角度看,电容的谐振是不希望的,但是电容的谐振并不是总是有害的。当要滤除的噪声频率确定时,可以通过调整电容的容量,使谐振点刚好落在骚扰频率上。

在实际工程中,要滤除的电磁噪声频率往往高达数百MHz,甚至超过1GHz。对这样高频的电磁噪声必须使用穿心电容才能有效地滤除。普通电容之所以不能有效地滤除高频噪声,是因为两个原因:一个原因是电容引线电感造成电容谐振,对高频信号呈现较大的阻抗,削弱了对高频信号的旁路作用;另一个原因是导线之间的寄生电容使高频信号发生耦合,降低了滤波效果。

穿心电容之所以能有效地滤除高频噪声,是因为穿心电容不仅没有引线电感造成电容谐振频率过低的问题,而且穿心电容可以直接安装在金属面板上,利用金属面板起到高频隔离的作用。但是在使用穿心电容时,要注意的问题是安装问题。

穿心电容最大的弱点是怕高温和温度冲击,这在将穿心电容往金属面板上焊接时造成很大困难。许多电容在焊接过程中发生损坏。特别是当需要将大量的穿心电容安装在面板上时,只要有一个损坏,就很难修复,因为在将损坏的电容拆下时,会造成邻近其它电容的损坏。

三大利器之共模电感

由于EMC所面临解决问题大多是共模干扰,因此共模电感也是我们常用的有力元件之一,共模电感是一个以铁氧体为磁芯的共模干扰抑制器件,它由两个尺寸相同,匝数相同的线圈对称地绕制在同一个铁氧体环形磁芯上,形成一个四端器件,要对于共模信号呈现出大电感具有抑制作用,而对于差模信号呈现出很小的漏电感几乎不起作用。

原理是流过共模电流时磁环中的磁通相互叠加,从而具有相当大的电感量,对共模电流起到抑制作用,而当两线圈流过差模电流时,磁环中的磁通相互抵消,几乎没有电感量,所以差模电流可以无衰减地通过。因此共模电感在平衡线路中能有效地抑制共模干扰信号,而对线路正常传输的差模信号无影响。

“图题:三大利器之共模电感”

共模电感在制作时应满足以下要求:

(1)绕制在线圈磁芯上的导线要相互绝缘,以保证在瞬时过电压作用下线圈的匝间不发生击穿短路。

(2)当线圈流过瞬时大电流时,磁芯不要出现饱和。

(3)线圈中的磁芯应与线圈绝缘,以防止在瞬时过电压作用下两者之间发生击穿。

(4)线圈应尽可能绕制单层,这样做可减小线圈的寄生电容,增强线圈对瞬时过电压的而授能力。

通常情况下,同时注意选择所需滤波的频段,共模阻抗越大越好,因此我们在选择共模电感时需要看器件资料,主要根据阻抗频率曲线选择。另外选择时注意考虑差模阻抗对信号的影响,主要关注差模阻抗,特别注意高速端口。

三大利器之磁珠

在产品数字电路EMC设计过程中,我们常常会使用到磁珠,铁氧体材料是铁镁合金或铁镍合金,这种材料具有很高的导磁率,他可以是电感的线圈绕组之间在高频高阻的情况下产生的电容最小。

铁氧体材料通常在高频情况下应用,因为在低频时他们主要程电感特性,使得线上的损耗很小。在高频情况下,他们主要呈电抗特性比并且随频率改变。实际应用中,铁氧体材料是作为射频电路的高频衰减器使用的。

实际上,铁氧体较好的等效于电阻以及电感的并联,低频下电阻被电感短路,高频下电感阻抗变得相当高,以至于电流全部通过电阻。铁氧体是一个消耗装置,高频能量在上面转化为热能,这是由他的电阻特性决定的。

铁氧体磁珠与普通的电感相比具有更好的高频滤波特性。铁氧体在高频时呈现电阻性,相当于品质因数很低的电感器,所以能在相当宽的频率范围内保持较高的阻抗,从而提高高频滤波效能。

在低频段,阻抗由电感的感抗构成,低频时R很小,磁芯的磁导率较高,因此电感量较大,L起主要作用,电磁干扰被反射而受到抑制;并且这时磁芯的损耗较小,整个器件是一个低损耗、高Q特性的电感,这种电感容易造成谐振因此在低频段,有时可能出现使用铁氧体磁珠后干扰增强的现象。

在高频段,阻抗由电阻成分构成,随着频率升高,磁芯的磁导率降低,导致电感的电感量减小,感抗成分减小。但是,这时磁芯的损耗增加,电阻成分增加,导致总的阻抗增加,当高频信号通过铁氧体时,电磁干扰被吸收并转换成热能的形式耗散掉。
 
铁氧体抑制元件广泛应用于印制电路板、电源线和数据线上。如在印制板的电源线入口端加上铁氧体抑制元件,就可以滤除高频干扰。铁氧体磁环或磁珠专用于抑制信号线、电源线上的高频干扰和尖峰干扰,它也具有吸收静电放电脉冲干扰的能力。

使用片式磁珠还是片式电感主要还在于实际应用场合。在谐振电路中需要使用片式电感。而需要消除不需要的EMI噪声时,使用片式磁珠是最佳的选择。

片式磁珠和片式电感的应用场合

片式电感: 射频(RF)和无线通讯,信息技术设备,雷达检波器,汽车电子,蜂窝电话,寻呼机,音频设备,个人数字助理(PDAs),无线遥控系统以及低压供电模块等。

片式磁珠: 时钟发生电路,模拟电路和数字电路之间的滤波,I/O输入/输出内部连接器(比如串口,并口,键盘,鼠标,长途电信,本地局域网),射频电路和易受干扰的逻辑设备之间,供电电路中滤除高频传导干扰,计算机,打印机,录像机(VCRS),电视系统和手提电话中的EMI噪声抑止。

磁珠的单位是欧姆,因为磁珠的单位是按照它在某一频率产生的阻抗来标称的,阻抗的单位也是欧姆。磁珠的DATASHEET上一般会提供频率和阻抗的特性曲线图,一般以100MHz为标准,比如是在100MHz频率的时候磁珠的阻抗相当于1000欧姆。针对我们所要滤波的频段需要选取磁珠阻抗越大越好,通常情况下选取600欧姆阻抗以上的。

另外选择磁珠时需要注意磁珠的通流量,一般需要降额80%处理,用在电源电路时要考虑直流阻抗对压降影响。

本文转载自:电子元件技术网
声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有,如涉及侵权,请联系小编邮箱:cathy@eetrend.com 进行处理。

围观 68

在现在产品中,电磁干扰问题越来越成为产品关注重点,也成为产品进入国外市场的重要瓶颈。由于中国长期忽略这块,以及这块的测试设备及其昂贵等众多因素,国内在这块领域中发展相对缓慢。了解这块的工程师少之又少,成为大多数工程师及国内企业研发部最为头疼的事情,它们在解决这类产品问题的时候,大多都是盲人摸象,走了很多弯路之后,才勉强把问题解决。这类经验并且具有不可复制性,在开发下面产品中依旧会面临各种问题,而且即使在解决了的产品中,留的货量不够,在批量生产的时候,随机性较大。

电磁兼容的问题真的又这么难么?今天让我们抛开事物的谜团,掌握其本质,彻底了解和掌握电磁兼容产生的原因并找到解决的方法,让工程师睡个安稳觉。众所周知,张飞老师提出的破解模拟硬件设计三大定律,第一,源、回路、阻抗;第二,电路是一个波形的整形,从无用的波形最终整形有用的波形,包括形态、相位的整形;第三,对元器件的参数、封装、鲁棒性、成本要熟知,这样才把产品设计在临界区。我们在此可以运用第一大定律源、回路、阻抗来融入到产品设计中,用第二大定律的波形测量分析来辅助我们整改电磁兼容问题,用第三大定律的元器件,封装来优化电磁兼容问题。

电磁兼容,简称EMC(electromagnetic compatibility)。它包含两个方面,一个是干扰其他的电器产品,简称EMI(electromagnetic interference),即电磁干扰;另一个是被其他电器产品干扰,叫抗干扰性,我们用EMS(electromagnetic susceptibility)表示。

要想解决电磁兼容问题,我们要先理解频率带宽的问题。通俗讲带宽是信号的频率,而信号频率本质是信号的速度。那么信号速度的本质是什么?是信号的上升斜率和下降斜率。信号斜率(包含信号的上升斜率和下降斜率,这里统称),信号斜率越慢,则其绝大多数只能通过导线传播,它的频率一般在0-30M Hz之间,这就是我们传导测试重点测试的地方。信号的斜率越快(一般的频率在30M Hz-3Z Hz之间,这就是所谓的带宽)则可以借助天线向空间辐射,这样的天线可以包括电源的引入线,包括元器件的圆角,包括走线的直角等。

测量哪些内容?

EMC测量的内容包含2个方面,第一传导测试,第二辐射测试。传导测试主要测量引出线,辐射测试主要测试空间4米天线、10米天线两种。

“”

“”

“”

什么叫ESD测试?

ESD测试是关于静电测试,当静电打向产品的时候,产品不会出现异常跑飞的现象的测试。

“”

什么叫噪音?

一般来讲,我们把输入的无用信号,统称为噪音。最早的时候,由于电源发出一些声响,我们把这样的声响称为噪音,但是实际上人耳接受频段的能力是有限的,2Hz-2KHz。实际上更多的频段的信息(无用信号)是人耳听不见的,因此我们把凡是对器件本身无用的信号称为噪音。简而言之,一切无用的波形皆为噪音。

那么,构成干扰要有三要素,骚扰源,传播途径,敏感设备。骚扰源分两种,一种是电场的骚扰源,一种是磁场的骚扰源。

“干扰示意图”
干扰示意图

从第一大定律去分析,源--这里的源指的骚扰源,骚扰源包括电场引起的扰动,磁场引起的扰动,统称电磁场引起的扰动。那么从这个频段角度来说,30M以下的传导扰动和30M以上的辐射扰动。回路--那么30M以下的传导扰动,它的传播路径(回路)是引线,也包含PCB走线;30M以上的扰动,它的传播路径是空间,由天线发射和接收的空间。阻抗--阻抗就是说在回路中对波形衰减的能力称为阻抗。从两个大方向去解答,依旧从传导和辐射来分析。首先,讨论下传导阻抗的问题。传导的阻抗可以在电路中有两个方面,第一个方面是差模干扰的问题,第二个是共模干扰的问题。

差模干扰是指两条电源线之间(wire to wire)的,主要通过选择合适的电容(X电容,也称安规电容),和差模线圈来进行抑制和衰减。共模干扰则是两条电源线分别对大地(简称线对地)的,主要通过选择合适的电容(Y电容,也是安规级别的),和共模线圈来进行抑制和衰减。我们常用的低通滤波器,一般会同时具有抑制共模和差模干扰的功能。

如下图,低通滤波器原理图

“低通滤波器原理图”
低通滤波器原理图

如图1,3为差模电容,2为共模电感,4为共模电容。

1,2,3共同组成的叫π型滤波器,1,3组成的电容主要是滤两根线之间的信号差,因此而得名。一般这两个电容的取值在0.22 uf-1.5 uf。在出现干扰超标的时候,一般解决方法是把这两个电容的值加大,但随着电容容值加大,会导致漏电流加大,这点需要注意。

由于差模电容是接在L和N线两线之间,那么它和后面的负载实际上是并联关系。又由于电容对低频次的信号有很强的阻碍作用,对高频次的信号有很强的导通作用,及低阻抗作用。当50Hz-60Hz低频交流信号流过电容两端的时候,由于电容的阻抗表现极其大,所以电容不起任何作用,等于没有这个电容。当差模信号通过的时候(差模信号一般是高频无用信号),那么电容表现为通路,阻抗很小,在高频信号下,则电容相当于将后面负载短路,那么后面负载就不会受高频信号的干扰。如图差模电容工作原理所以。以上是运用张老师第一大定律源、回路、阻抗来分析差模电容特性。

“差模电容工作原理”
差模电容工作原理

2为共模电感,这个上面有两根独立的线圈,方向相反的绕制在同一个圆形闭合的磁芯上。由于这两根导线大小相等,反向相反,因此产生的磁场相互抵消了。共模电感和后面中的负载是串联关系,当有差分信号通过时(差模信号一般是高频无用信号),由于电感对电流的变化有阻碍作用,那么此时电感表现为大电阻,而后面负载类似于小电阻,则电感承担了绝大多数高次谐波的压降。根据电阻分压原则,后面的负载分得的电压接近于零。当50Hz-60Hz低频交流信号流过电感两端的时候,由于电感的感抗表现极其小,所以电感几乎不起任何阻碍作用,等于没有这个电感。所以我们说这个电感对差分信号起作用。如图共模电感工作原理所示。以上仍然是运用张老师第一大定律源、回路、阻抗来分析共模电感特性。共模电感的感量选型一般在几百微亨到几毫亨级别。

“共模电感工作原理”
共模电感工作原理

4为共模电容,这两个电容由于分别连接着L和N两根线且对大地的(不是电路中的地,一般电路中的地为GND,也为浮地,而共模电容的地为大地earth),呈Y型状,因此而得名。由于Y电容一端连接着大地,那么它和后面负载实际上并联关系的。如图共模电容工作原理,当50Hz-60Hz低频交流信号流过Y电容两端的时候,由于电容的阻抗表现极其大,相当于断路,不导通。当共模信号通过的时候(共模信号一般是高频无用信号),那么电容表现为通路,阻抗很小,高频信号通过Y电容到大地,那么后面负载就不会受高频信号的干扰。以上仍然是运用张老师第一大定律源、回路、阻抗来分析共模电容特性。共模电容的取值一般在2200pF-6800pF,其值越大,越容易解决干扰问题,但是漏电也越大,取值要甚重。

“共模电容工作原理”
共模电容工作原理

当电路中的正常电流流经共模电感时,电流在同相位绕制的电感线圈中产生反向的磁场而相互抵消,此时正常信号电流主要受线圈电阻的影响(和少量因漏感造成的阻尼);当有共模电流流经线圈时,由于共模电流的同向性,会在线圈内产生同向的磁场而增大线圈的感抗,使线圈表现为高阻抗,产生较强的阻尼效果,以此衰减共模电流,达到滤波的目的。

一般滤波器不单独使用差模线圈,因为共模电感两边绕线不一致等原因,电感必定不会相同,因此能起到一定的差模电感的作用。如果差模干扰比较严重,就要追加差模线圈。

本文转载自:电子说--张飞实战电子
声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有,如涉及侵权,请联系小编邮箱:cathy@eetrend.com 进行处理。

围观 10

EMC是业界的一个难点;文章介绍了EMC三个规律、EMC问题三要素、电磁骚扰的特性、以及五层次EMC设计法;给企业提供了对待EMC的建议;作者认为EMC改进要如诊治疾病一样对症施治;作者倡导坚持EMC规律,趁早考虑和解决EMC 问题-进行EMC设计。

EMC是产品认证的重要内容

随着我国加入WTO无论是走向国际大市场的中国产品,还是涌向中国市场的外国产品,几乎都要进行各种各样的产品认证。产品认证,从国际贸易角度看,实质上是技术性贸易壁垒。我们只有不断提高产品质量, 突破技术壁垒,才能开拓海外市场,促进外贸发展。国内新的3C 认证替代了原来的CCIB 和CCEE 认证,“CCC”是我国强制性产品认证标志—— China Compulsory Certification的英文缩写,只有取得3C 认证的产品才能进入国内市场。3C认证对机电、电器产品的安全性能、EMC等方面作了详细规定。

EMC是多数企业的技术难点

大力发展电子、信息产业为主体的高新技术产业,是我们的既定方针。当今是一个连科技也在追赶潮流的时代,机电产品日新月异,“轻薄短小和多功能化”成为时尚,数码产品、机电一体化产品、信息家电、多媒体设备等技术含量较高的产品层出不穷,更新换代速度日益加快,芯片集成度和产品工作速度不断提高,伴随的电磁骚扰问题日益复杂。

目前,我国整体EMC研究起步较晚,许多企业对EMC认知度不够,缺乏EMC方面的经验和测试设备,在产品设计、生产工艺和元器件的选择上都有不同程度的困惑,产品生产出来后往往EMC不能符合标准要求。EMC问题是当前多数企业的技术难点!从事机电产品制造的广大企业皆有同感,解决EMC问题,比之解决产品的安全问题要困难得多。这就更加加剧了有些企业面对品牌竞争和价格竞争,偏向于降低成本、牺牲EMC 要求的现象。

机电产品3C认证的指标涉及产品的安全、EMC两个方面。从认证检测来看,产品达不到“3C”认证要求的主要原因是EMC方面过不了关。事实上,无论 日常检验还是各种产品认证中,EMC测试通不过的情况比较普遍。随着3C认证顺利开展,部分企业在EMC问题上愁眉不展,帮助企业是我们光荣职责。此稿没有复杂的理论分析和推导,只是扼要地介绍EMC三个规律、EMC问题三要素、电磁骚扰的特性、以及五层次EMC设计法;一方面力求实用,另一方面意图抛砖引玉。

认识和利用EMC领域三个重要规律

作者认为:EMC不是光靠理论就能完全解决的,EMC是一项实践工程。从事EMC行业,如能深刻领会以下三个EMC领域重要规律,实践中坚持运用,必然收到事半功倍的效果。

1) 规律一、EMC费效比关系规律:

EMC问题越早考虑、越早解决,费用越小、效果越好。在新产品研发阶段就进行EMC设计,比等到产品EMC测试不合格才进行改进,费用可以大大节省,效率可以大大提高;反之,效率就会大大降低,费用就会大大增加。 经验告诉我们,在功能设计的同时进行EMC 设计,到样板、样机完成则通过EMC测试,是最省时间和最有经济效益的。相反,产品研发阶段不考虑EMC,投产以后发现EMC不合格才进行改进,非但技术上带来很大难度、而且返工必然带来费用和时间的大大浪费,甚至由于涉及到结构设计、PCB设计的缺陷,无法实施改进措施,导致产品不能上市。

2) 规律二、高频电流环路面积S越大, EMI辐射越严重。

高频信号电流流经电感最小路径。当频率较高时,一般走线电抗大于电阻,连线对高频信号就是电感,串联电感引起辐射。电磁辐射大多是EUT被测设备上的高频电流环路产生的,最恶劣的情况就是开路之天线形式。对应处理方法就是减少、减短连线,减小高频电流回路面积,尽量消除任何非正常工作需要的天线,如不连续的布线或有天线效应之元器件过长的插脚。减少辐射骚扰或提高射频辐射抗干扰能力的最重要任务之一,就是想方设法减小高频电流环路面积S。

3) 规律三、环路电流频率f越高,引起的EMI辐射越严重,电磁辐射场强随电流频率f的平方成正比增大。

减少辐射骚扰或提高射频辐射抗干扰能力的最重要途径之二,就是想方设法减小骚扰源高频电流频率f,即减小骚扰电磁波的频率f。本文以下内容,就是利用以上三个规律,倡导趁早考虑EMC问题,介绍EMC 设计和EMC问题改进。

改进EMC 问题,如同诊治疾病

如果产品没有通过EMC 测试,我们从测量结果中,只能知道哪些频率点“超标”了,而这些频率的电磁骚扰是从哪里出来的,往往是工程师门最不容易发现、最难解决的问题。产品EMC 问题,说难亦难,说易亦易。就如给病人治病一样,关键是看你这个病是可治愈的还是不治之症,对可治之症能否辨证施治。中医看病,讲究望闻切诊问;现代医学多讲究量血压、BT、CT、化验等,目的都是为了查清病灶、病因,做到因病施治。

同样,改进EMC问题,看成为诊治疾病,就是科学性与趣味性的结合。首先,根据EMI产生的途径和机理,也就是EMC问题产生的要素,针对EUT(被测试样品,下同)的电路原理,先作一些判断,比如IT类设备和AV音视频类设备引起EMC问题的原因或者内部骚扰源是什么,先进行推断,再结合测试项目测试图透过现象看本质,分析超差原因--把骚扰源搞清楚,把骚扰途径摸透彻,以便有的放矢。分析超差原因,可使用高频示波器或频谱分析仪加上 场探头验证分析结果,从频域到时域,再从频域到时域,分析、寻找产生EMC问题的对应电路和器件。

EMC 问题三要素

开关电源及数字设备由于脉冲电流和电压具有很丰富的高频谐波,因此会产生很强的辐射。电磁干扰包括辐射型(高频)EMI、传导型(低频)EMI,即产生EMC问题主要通过两个途径:一个是空间电磁波干扰的形式;另一个是通过传导的形式,换句话说,产生EMC问题的三个要素是:电磁干扰源、耦合 途径、敏感设备。辐射干扰主要通过壳体和连接线以电磁波形式污染空间电磁环境;传导干扰是通过电源线骚扰公共电网或通过其他端子(如:射频端子,输入端子)影响相连接的设备。

传导、辐射、骚扰源-------(途径)------ 敏感受体近场耦合

IT、AV 设备可能的骚扰源

A) FM接收机、TV接收机本机振荡,基波及谐波由高频头、本机振荡电路产生;

B) 开关电源的开关脉冲及高次谐波,同步信号方波及高频谐波,行扫描显像电路产生的行、场信号及高频谐波;

C) 数字电路工作需要的各种时钟信号及高频谐波、以及它们的组合,各种时钟如CPU芯片工作时钟、MPEG解码器工作时钟、视频同步时钟(27MHz,16.9344MHz ,40.5MHz)等;

D) 数字信号方波及高频谐波,晶振产生的高次谐波,非线性电路现象(非线性失真、互调、饱和失真、截止失真)等引起的无用信号、杂散信号;

E) 非正弦波波形,波形毛剌、过冲、振铃,电路设计存在的寄生频率点。

F) 对于敏感受体通过耦合途径接受的外部骚扰包括浪涌、快速脉冲群、静电、电压跌落、电压变化和各种电磁场。

电磁骚扰的特性

① 单位脉冲的频谱最宽;

② 频谱中低频含量取决于脉冲的面积,高频分量取决于脉冲前后沿的陡度;

③ 晶体振荡电平必须满足一定幅度, 数字电路才能按一定的时序工作,使晶振产生的骚扰呈现覆盖带宽、骚扰电平高的特点;

④ 收发天线极化、方向特性相同时,EMI辐射和接受最严重;收发天线面积越大, EMI危害逾大;

⑤ 骚扰途径:辐射,传导,耦合和辐射、传导、耦合的组合。

⑥ 电源线传导骚扰主要由共模电流产生;

⑦ 辐射骚扰主要由差模电流形成的环路产生。EMC设计前面已经提过,EMC的根本问题,解决 EMC问题的根本办法,无论从市场经济的原则出发,还是从其它方面考虑,都是趁早进行EMC设计。从设计立项的一开始,就把EMC要求纳入设计任务书,作为设计的输入之一。

EMC设计

简单地说,就是仔细预测可能发生的各种EMC问题,进行方案和电路的优化选型,寻找一种优化电路、机械结构和PCB的设计解决方案,提高产品的设计质量,确保达到功能和性能指标的情况下,兼顾成本效益,避免EMC问题。为抑制和消除骚扰源,减小高频信号频率、减小高频电流回路面积、减小共阻抗耦合或感应耦合,选用低速、低辐射器件,选用屏蔽机箱、屏蔽电缆和I/O滤波器都是常用的措施。

一般来说,EMC设计可分五个层次。以下为五个层次EMC设计要点:

1) 方案选择、主要部件、集成电路的选型、电路和机械结构设计;对于产品的成功与否,第一层次设计是最基本、最重要的,任何错误都意味着该产品项目彻底失败。这一层主要EMC考虑体现在:

a)方案选择、主要部件、集成电路的选型主要考虑减少辐射骚扰或提高射频辐射抗干扰能力,尽量选用本身发射小的芯片,如翻转时间长、工作速率低的器件,多地线脚的芯片(芯片实质就是集成度较高的电路模块,封装时多装地线脚,可以减小高速差模电流环面积S,相应地减小芯片的发射);避免使用大功率、高损耗器件,它们往往是大的辐射源;

b)保证所选器件不工作在非线性区,以免产生谐波分量成为干扰源。

c)电路和机械结构设计除考虑减少辐射骚扰或提高射频辐射抗干扰能力外,主要考虑电源电路防外部骚扰包括浪涌、快速脉冲群、静电、电压跌落、电压变化等;

d)电路设计或方案应不使数字信号波形产生过冲,应使无用的谐波振荡幅度最小,使无用的高次谐波成分最少,避免引发强烈的电磁骚扰;

e)对集总参数电路,增加阻尼、减小Q值,防止振荡;

2)PCB的EMC设计;

对于产品的成功与否, PCB的EMC设计是重要的一环。PCB设计不合理,会产生无法补救的后果;

PCB良好的EMC设计,有事半功倍的效果。PCB 的EMC设计应遵循以下内容:

a) 尽量减小所有的高速信号及时钟信号线构成的环路面积,连接线要尽可能短,并使信号线紧邻地回路;

b) 使用小型化器件和多层线路板,多层印制板可紧缩布线空间,高频特性好,容易实现EMC;

c) 印制板层数选择考虑关键信号的屏蔽和隔离要求,先确定所需信号层数,然后考虑成本的前提下,增加地平面和电源层是PCB EMC设计最好的措施之一;

d) 印制板分层原理与布置印刷电路、布置排线的原理一样,元件面下面为地平面,关键电源平面与其对应的地平面相邻,相邻层的关键信号不跨区,所有的信号层特别是高速信号、时钟信号与地平面相邻,尽量避免两信号层相邻;

e) 个别电源层、地层不能作为一个连续的平面时,采用多网孔连接形成地格蜂窝网,有效减小电流环路面积,减小公共阻抗R,加大信号与地层分布电容;

f) 线路板布线设计时顺序考虑:电源和地/时钟线/信号线,布线应该短、直、粗、匀,不要直角和突变, 应有“之”字形,用圆角代替尖锐走线,尽可能加宽电源和地的布线,电源和地层的分割,尽量符合微带线和带状线要求;

g) 走线尽可能远离骚扰源,布线考虑铁氧体材料的使用,预留磁珠和贴片滤波器的位置,以备按需加减;

3)电与接地、高速信号线路及内部线缆的EMC设计;PCB的EMC设计中也提到供电与接地、高速信号线路的EMC设计,此外,还应遵循以下内容:

a)芯片间使用低阻抗地连接(地平面),不同芯片供电脚间阻抗尽量小,芯片供电脚(意思是离芯片供电 脚很近的供电线上)与地间接高频旁路电容,供电布线预留磁珠和贴片滤波器的位置,以备按需加减;

b) 布线、I/O排线的核心原则就是减小电流环面积S,布置排线的原理与印制板分层原理一样,关键电源线与其对应的地线相邻,所有的信号层特别是高速信号、时钟信号线与地线相邻,尽量避免两信号线相邻;

c) 为避免接地线长度过长(接近λ/4),可采用多点就近接地,接地线高频阻抗要小;

d) 减小电缆的天线效应及减小偶极子天线效应,跨线、I/O排线采用屏蔽性能好的线缆,内导线采用多股双绞线,使空间场互抵,屏蔽层可作为回线;

e) 机内采用屏蔽线防止感应噪声;

f) 波器的输入输出线应拉开距离,忌并行走线,以免影响滤波效果;

h) I/O接口注意高速电路阻抗匹配,减小、消除反射;

4) 屏蔽设计;屏蔽好的要求有三:完整的电连续体;滤波措施;良好的接地。

对于信息技术IT类设备,当主板及配置选定的情况下, 提高整机的屏蔽效果和各个部分的隔离效果非常重要,尤其个人计算机和液晶显示器。这里只说屏蔽设计:

a) 计算机机壳内骚扰场强较大,机壳塑料部分未涂导 电材料或所涂导电材料不佳,机箱有孔洞、缝隙,不是一个完整电连续体,进出线滤波不好,最终都可导致辐射骚扰超出限值。机箱为了更好屏蔽电磁辐射,既能照顾到机箱的散热需求,又能有效地防止 磁波的衍射,开孔尺寸一般不超过4mm;

b) 根据产品实际进行屏蔽设计,端口、通风孔、孔洞、连接缝隙的屏蔽性都是值得考虑的因素;

c) 液晶显示器为了更好屏蔽电磁辐射可以采用喷涂导电材料的外壳(接缝处要喷涂导电材料);

d) 为了将辐射减到最小,尽量使用通过了CQC(EMC方面)自愿认证的机箱;

e) 为保证机箱的密封性,要使用精密模具冲压成型,设计适当的弹点和卷边;

f) 变压器加静电屏蔽及接地等

5)输入/输出的滤波设计电源线滤波和信号线滤波的重要性并不亚于机箱屏蔽,滤波关键是针对EMC 要求,兼顾达标和经济的原则。在I/O接口部位,一般采用高频滤波效果好、安装简单的滤波连接器。在电缆上缠绕或套用铁氧体磁环也能起到一定的滤波吸波作用。设计或使用信号线滤波器时,滤波器的截止频率须高于电缆上要传输的信号频率。

a) 传导骚扰问题处理的方法主要是低通滤波。在1MHz以上时,传导发射问题通常是由辐射发射的耦合而引起的,须综合运用抑制传导发射和辐射发射的技术措施,如屏蔽、去耦和滤波。

b) 滤波电路的衰减性能与源和负载的阻抗关系很大,失配越大,滤波器衰减电磁骚扰的效果越好。大多数情况下,电源线表现为低阻抗,则滤波器的输入端应为高阻抗。另一方面,设备既可能为高阻抗,也可能为低阻抗。对于线性电源高阻抗,为获得阻抗失配,负载端应设计为低阻抗。对于开关电源和同步电机这样的低阻抗设备,负载端设计为高阻抗。

c) 减共模和差模电容,加减共模和差模线圈,调整电容参数和线圈匝数,共模和差模插入损耗对频率的曲线都可改变。滤波器的泄漏电流是指相线和中线与外壳地之间流过的电流。它主要取决于连接在相线与地和中线与地间的共模电容。共模电容的容量越大,共模阻抗越小,共模骚扰抑制效果越好,但安全标准规定泄漏电流不能过大。

d) 电源滤波器安装位置应靠近电源线入口处,如能 做成与接口一体化更好。对于金属屏蔽机箱,选用独立电源屏蔽滤波器,安装在电源线入口处,并确保滤波器外壳与设备机箱(地)良好电接触,这样的效果是最好的。滤波器接地通常固定在电缆出口处的公共地金属构件上。

给企业的建议

一、了解EMC问题三要素、电磁骚扰的特性、电磁骚扰源和传播途径,掌握五个层次EMC设计法则,坚持利用EMC规律,趁早考虑和解决EMC问题;遇到PCB必须重新设计或结构必须重新设计时,大家只有后悔EMC考虑得迟了。治病不如防病,治病必须对症下手,宜早不宜迟,解决EMC问题是一样的道理。

二、当产品的EMC不符合要求需要整改时,首先要如同治病一样,诊断出电磁骚扰源、耦合途径,然后利用EMC设计要点中提到的方法,对症下手,综合运用屏蔽、滤波吸波、接地等措施实施改进。改进途中,测试再不通过,先检讨问题判断是否正确?对策是否失误?使用器件参数是否需要调整?不要一下子就改变初衷,应不慌不忙。整改时要特别注意,正确诊断出电磁骚扰源、耦合途径后,采用EMC抑制器件时,不但要选择合适,而且所用器件要货真价实,才不会久治不愈。

三、工厂应对关键生产工序进行识别,关键工序操作人员应加以培训,制定相应的工艺作业指导书或标准样件(可以采取拍照给出图片的方式),使生产过程受控。取最简化而且EMC又有一定裕量的样机作为标准件,核对生产、装配工艺,检验时,着重进行EMC关键元器件和材料的检验/验证,以及装配工艺一致性检查。

四、为验证产品持续符合标准要求,工厂应在适当阶段对产品进行确认检验(本身不具备检测条件时,抽样送有能力的机构进行检验),以确保产品持续符合EMC要求,万一变化亦能及时发现。

五、当产品EMC关键件要改变、调整时,应用新的器件替换原器件重新制造几台样机进行测试,确认EMC关键件改变和调整对整机EMC的影响。

小结

了解EMC问题三要素、电磁骚扰的特性、电磁骚扰源和传播途径,掌握五个层次EMC设计法,EMC会变得有规可循的,坚持EMC规律,趁早考虑和解决EMC问题,即可省时省力,事半功倍。在EMC工作方面,比照老中医看病方式,据症施治,有意识带点人性化,能提高解决问题的兴趣。

EMC90%是设计出来的,整改出来的极少、极少。治病不如防病,治病必须对症下手,宜早不宜迟。道理简单,更需重视。

本文转载自:百度文库
声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有,如涉及侵权,请联系小编邮箱:cathy@eetrend.com 进行处理。

围观 66

本文主要参考自《MICROCONTROLLER DESIGN GUIDELINES FOR ELECTROMAGNETIC COMPATIBILITY》,此文虽然写在多年前,不过有很多很现实的参考意义。另外别的IC厂商也有很多的参考文档,如果大家有兴趣可以参考一下。 题外话,写这个话题主要是去剖析模块内部主要的干扰源和敏感器件,通过这些主要的东西的设计来慢慢体会模块的EMC设计,不过难免有些一鳞半爪之嫌,积累 多了可能未来在设计电路的时候在前期就很容易把问题考虑周到和细致。

1、单片机的工作频率

1.1、单片机的设计应根据客户的需求来选择较低的工作频率

首先介绍一下这样做的优点:采用低的晶振和总线频率使得我们可以选择较小的单片机满足时序的要求,这样单片机的工作电流可以变得更低,最重要的是VDD到VSS的电流峰值会更小。

当然我们这里需要做一个妥协,因为客户的要求可能是兼容的和平台化的(目前汽车电子的发展趋势就是平台化),选择较高的工作频率可以兼容更多的平台,也方便以后升级和扩展,因此要选择一个较低的可以接受的工作频率。

2、恰当的输出驱动能力

在给定负载规范,上升和下降时间,选择适当的输出的上升时间,最大限度地降低输出和内部驱动器的峰值电流是减小EMI的最重要的设计考虑因素之一。驱动能 力不匹配或不控制输出电压变化率,可能会导致阻抗不匹配,更快的开关边沿,输出信号的上冲和下冲或电源和地弹噪声。

2.1、设计单片机的输出驱动器,首先确定模块需求的负载,上升和下降的时间,输出电流等参数,根据以上的信息驱动能力,控制电压摆率,只有这样才能得到符合模块需求又能满足EMC要求。

驱动器能力比负载实际需要的充电速度高时,会产生的更高的边沿速率,这样会有两个缺点:

1.信号的谐波成分增加了.

2.与负载电容和寄生内部bonding线,IC封装,PCB电感一起,会造成信号的上冲和下冲。

选择合适的的di/dt开关特性,可通过仔细选择驱动能力的大小和控制电压摆率来实现。最好的选择是使用一个与负载无关的恒定的电压摆率输出缓冲器。同样的 预驱动器输出的电压摆率可以减少(即上升和下降时间可以增加),但是相应的传播延迟将增加,我们需要控制总的开关时间)。

2.2、使用单片机的可编程的输出口的驱动能力,满足模块实际负载要求。

可编程的输出口的驱动器的最简单是的并联的一对驱动器,他们的MOS的Rdson不能,能输出的电流能力也不相同。我们在测试和实际使用的时候可以选择不同的模式。实际上目前的单片机一般至少有两种模式可选择,有些甚至可以有三种(强,中等,弱)

2.3、当时序约束有足够的余量的时候,通过降低输出能力来减缓内部时钟驱动的边沿。

减少同步开关的峰值电流,和di/dt,一个重要的考虑因素就是降低内部时钟驱动的能力(其实就是放大倍数,穿通电流与之相关型很大)。降低时钟边沿的电 流,将显著改善EMI。当然这样做的缺点就是,由于时钟和负载的开通时间的变长使得单片机的平均电流可能增加。快速边沿和相对较高的峰值电流,时间更长边 沿较慢的电流脉冲这两者需要做一个妥协。

“”

2.4、晶振的内部驱动(反向器)最好不要超过实际的需求。

这个问题,实际上前面也谈过了,当增益过大的时候会带来更大的干扰。

3 、设计最小穿通电流的驱动器

3.1、时钟,总线和输出驱动器应尽可能使得传统电流最小

穿通电流【重叠电流,短路电流】,是从单片机在切换过程中,PMOS和NMOS同时导通时候,电源到地线的电流,穿通电流直接影响了EMI和功耗。

这个内容实际上是在单片机内部的,时钟,总线和输出驱动器,消除或减少穿通电流的方法是尽量先关闭一个FET,然后再开通一个FET。当电流较大时,需要额外的预驱动电路或电压摆率。

4、时钟的生成和分配

4.1就单片机内部而言,我们宁可给每个部分分配时钟(尽可能小的高频时钟),当然我们需要额外的管理时钟偏移工作。这样做要比使用一个增益很大的的时钟缓冲器,驱动整个IC的时钟好很多

同步CMOS的设计,在时钟边沿产生很大的峰值电流。时钟树的结构使用(在系统时间允许的条件下),比起主时钟驱动器和时钟分配线路,将减少同步开关电流。【时钟树结构中固有的延迟时间使得开关在不同时间分离开来】

4.2、使用电源管理技术。

把时钟源尽可能靠近需要的IC,如果在一个模块内需要分配时钟的话。在不需要时钟的时候,关闭时钟源。【睡眠模式的时候通常需要做时钟的切换】

4.3、在系统的限制允许的条件下,尽量使用非重叠时钟。

非重叠时钟,是指没有同步边缘的时钟。从系统的角度来说,非重叠的时钟边沿有助于消除竞争冒险和亚稳态。从EMC的角度看,加入时钟边沿之间的过渡时间会降低峰值电流和谐波的峰值幅度。平均电流从时间跨度上来看将保持大致相同,但幅度和频谱形状会发生变化。

如果时钟间的过渡是接近的但不同步(假设边沿速度相对于时钟周期要快得多),电流波形会变平和持续时间会变长。随着过渡时间的增加,对每个边沿来说到电流波形会分离成若干个脉冲。较低的脉冲幅度相应降低了谐波的频谱幅度,电流脉冲边沿很可能依然大致相同(维持脉冲带宽)。理想情况下,两相系统中非重叠的占空比为33%,最大限度地加大时钟边沿之间的时间。然而,实际应用中不可能使用这种方式,必须做一些妥协,实际系统中不容许时钟边沿的有这么大的跨度。

4.4、使时钟电路尽量远离I / O逻辑电路,减少共模辐射问题发生的可能性。

时钟信号需要远离I / O逻辑或平行的引线。时钟暂态边沿可以耦合到I / O逻辑,产生电压的噪声。

4.5、输入引脚同步器移动远离单片机引脚区域,进入单片机的核心模块。

这项方法可以减少所需的时钟驱动器的大小,

移动同步器靠近时钟源可减少时钟信号线路长度。时钟驱动器上的电容负载部分取决于引线的寄生电容的,时钟驱动充电负荷将变小。

本文转载自:张飞实战电子
声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有,如涉及侵权,请联系小编邮箱:cathy@eetrend.com 进行处理。

围观 71

页面