单片机实现EMC设计需注意的以下的情况:

1、单片机的工作频率

1.1单片机的设计应根据客户的需求来选择较低的工作频率

首先介绍一下这样做的优点:采用低的晶振和总线频率使得我们可以选择较小的单片机满足时序的要求,这样单片机的工作电流可以变得更低,最重要的是VDD到VSS的电流峰值会更小。

当然我们这里需要做一个妥协,因为客户的要求可能是兼容的和平台化的(目前汽车电子的发展趋势就是平台化),选择较高的工作频率可以兼容更多的平台,也方便以后升级和扩展,因此要选择一个较低的可以接受的工作频率。

“”

2、恰当的输出驱动能力

在给定负载规范,上升和下降时间,选择适当的输出的上升时间,最大限度地降低输出和内部驱动器的峰值电流是减小EMI的最重要的设计考虑因素之一。

驱动能力不匹配或不控制输出电压变化率,可能会导致阻抗不匹配,更快的开关边沿,输出信号的上冲和下冲或电源和地弹噪声。

2.1设计单片机的输出驱动器

首先确定模块需求的负载,上升和下降的时间,输出电流待续哦啊,根据以上的信息驱动能力,控制电压摆率,只有这样才能得到符合模块需求又能满足EMC要求。

驱动器能力比负载实际需要的充电速度高时,会产生的更高的边沿速率,这样会有两个缺点:

1.信号的谐波成分增加了。

2.与负载电容和寄生内部bonding线,IC封装,PCB电感一起,会造成信号的上冲和下冲。

选择合适的的di/dt开关特性,可通过仔细选择驱动能力的大小和控制电压摆率来实现。最好的选择是使用一个与负载无关的恒定的电压摆率输出缓冲器。同样的预驱动器输出的电压摆率可以减少(即上升和下降时间可以增加),但是相应的传播延迟将增加,我们需要控制总的开关时间)。

2.2使用单片机的可编程的输出口的驱动能力,满足模块实际负载要求。

可编程的输出口的驱动器的最简单是的并联的一对驱动器,他们的MOS的Rdson不能,能输出的电流能力也不相同。我们在测试和实际使用的时候可以选择不同的模式。实际上目前的单片机一般至少有两种模式可选择,有些甚至可以有三种(强,中等,弱)。

2.3当时序约束有足够的余量的时候,通过降低输出能力来减缓内部时钟驱动的边沿。

减少同步开关的峰值电流,和di/dt,一个重要的考虑因素就是降低内部时钟驱动的能力(其实就是放大倍数,穿通电流与之相关型很大)。降低时钟边沿的电流,将显著改善EMI。当然这样做的缺点就是,由于时钟和负载的开通时间的变长使得单片机的平均电流可能增加。快速边沿和相对较高的峰值电流,时间更长边沿较慢的电流脉冲这两者需要做一个妥协。

2.4晶振的内部驱动(反向器)最好不要超过实际的需求。

这个问题,实际上前面也谈过了,当增益过大的时候会带来更大的干扰。

3、设计最小穿通电流的驱动器

3.1 时钟,总线和输出驱动器应尽可能使得传统电流最小

穿通电流【重叠电流,短路电流】,是从单片机在切换过程中,PMOS和NMOS同时导通时候,电源到地线的电流,穿通电流直接影响了EMI和功耗。

这个内容实际上是在单片机内部的,时钟,总线和输出驱动器,消除或减少穿通电流的方法是尽量先关闭一个FET,然后再开通一个FET。当电流较大时,需要额外的预驱动电路或电压摆率。

本文转载自:面包板社区
转载地址:http://mp.weixin.qq.com/s/bBb4Pbsm39vrSlSYYYTWmQ
声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有,如涉及侵权,请联系小编进行处理。

围观 4

背景信息

到 2020 年,ADAS 市场预计将达到 600 亿美元 [数据来源:Allied Market Research]。这意味着,在 2014 年到 2020 年这个时间段内,年复合增长率为 22.8%。显然,这对半导体产品而言,意味着巨大的机会!

ADAS 是 “高级驾驶员辅助系统 (Advanced Driver AssistanceSystems)” 的英文首字母缩略语,在今天的很多新型汽车中都能经常见到。这类系统常常方便了安全驾驶,如果系统检测到来自周围物体的风险,例如不守规矩的行人、骑行者甚至处于不安全行驶方向的其他车辆,就会向驾驶员发出警报。此外,这类系统通常还会提供动态功能,例如自适应巡航控制、盲点检测、车道偏离警告、驾驶员犯困监视、自动刹车、牵引力控制和夜视。因此,在当前这 10 年的后半段,消费者对安全的日益关注、对驾驶舒适度的需求以及不断增加的政府安全法规,成了汽车 ADAS 增长的主要驱动力。

这种增长的到来必然伴随着对这个行业的挑战,其中包括价格压力、通货膨胀、测试这类系统的复杂性和困难。此外,欧洲是最具创新性的汽车市场之一,这一点应该不足为奇,因此,欧洲已经看到,ADAS 正大举进入市场,欧洲汽车行业的客户在大量采用 ADAS。不过,美国和日本汽车制造商也没有很落后。汽车行业的最终目标是,提供无人坐在方向盘后面的自动驾驶汽车!

系统带来的挑战

一般而言,ADAS 系统中包括某种处理器,以收集来自汽车中无数传感器的输入数据,然后处理这些数据,以便能够以容易理解的方式方便地提供给驾驶员。此外,这类系统通常直接由汽车的主电池供电,其标称电压为 9V 至 18V,不过由于系统中的电压瞬态而可能高达 42V,以及在冷车发动情况下可能低至 3.5V。因此,很显然的是,这类系统中的任何 DC/DC 转换器最低限度都必须能够应对 3.5V 至 42V 的宽输入电压范围。

很多 ADAS 系统都是用 5V 和 3.3V 轨给各种模拟和数字 IC 产品供电,然而,通常使用的处理器 I/O 及内核电压的运行要求却处于低于 2V 的范围,而且有可能低至 0.8V。此外,这类系统常常安装在汽车中某一空间和散热都受限的地方,因此限制了可用于冷却用途的散热器的使用。尽管人们普遍使用高压 DC/DC 转换器直接从电池产生 5V 和 3.3V 电源轨,但是在今天的 ADAS 系统中,开关稳压器还必须以 2MHz 或更高的频率切换,而不是过去低于 500kHz 的开关频率。这种变换背后的关键驱动力是,需要占板面积更小的解决方案,同时保持高于 AM 频段,以避免任何潜在的干扰。

最后,似乎设计师的任务还不够复杂,他们还必须确保 ADAS 系统符合汽车中的各种抗噪声标准要求。在汽车环境中,对有些区域,低热耗散和高效率是很重要的,在这些区域,开关稳压器正在取代线性稳压器。此外,开关稳压器一般是输入电源总线上的第一个有源组件,因此对整个转换器电路的 EMI 性能有很大的影响。

有两种类型的 EMI 辐射:传导型和辐射型。传导型辐射依赖连接产品的导线和走线。既然这种噪声局限于设计中的特定端子或连接器处,那么如之前已经提到的那样,通过良好的布局或滤波器设计,常常在开发过程相对较早的阶段,就能够确保符合传导型辐射要求。

然而,辐射型辐射就完全是另外一回事了。电路板上携带电流的所有东西都辐射一个电磁场。电路板上的每一条走线都是一个天线,每一个铜平面都是一个谐振器。除了纯粹的正弦波或 DC 电压,任何信号都产生遍布信号频谱的噪声。即使经过了仔细设计,在系统经过测试之前,电源设计师仍然从来无法确知辐射型辐射将会多严重。而且,在设计从根本上完成之前,无法正式进行辐射型辐射测试。

滤波器常常用来衰减某一频率或某一频率范围的噪声强度以降低 EMI。通过增加金属屏蔽和磁性屏蔽,可以衰减通过空间 (辐射型) 传播的那部分能量。通过增加铁氧体珠和其他滤波器,可以控制依赖 PCB 走线 (传导型) 的那部分能量。EMI 无法完全消除,但是可以衰减到一个其他通信和数字组件可以接受的水平。此外,几个监管机构也要求执行一些标准,以确保符合 EMI 要求。

与通孔式组件相比,采用表面贴装技术的新式输入滤波器组件的性能更高。然而,这种改进的速度慢于开关稳压器开关工作频率提高的速度。开关转换速度提高,会使效率提高、最短接通和断开时间缩短,但是谐波分量增大了。开关频率每增大一倍,在开关容量和转换时间等所有其他参数保持恒定时,EMI 恶化 6dB。宽带 EMI 的表现就像一个一阶高通滤波器,如果开关频率提高 10 倍,辐射就增大 20dB。

熟练的 PCB 设计师将设计很小的热环路,并使用尽可能靠近有源层的屏蔽接地层。然而,在去耦组件中存储充足能量所需的器件引脚布局、封装结构、热设计要求和封装尺寸决定了热环路的最小尺寸。使问题更加复杂的是,在典型的平面印刷电路板中,走线之间高于 30MHz 的磁性或变压器型耦合将全面减弱滤波器的作用,因为谐波频率越高,不想要的磁耦合就变得越有效。

具低 EMI / EMC 辐射的双 DC / DC 转换器

由于上述的应用限制,凌力尔特公司 (最近已被 ADI 收购) 开发了 LT8650S,这是一款能接受高输入电压的双输出单片同步降压型转换器,具很低的 EMI/EMC 辐射。其 3V 至 42V 输入电压范围使该器件非常适合包括 ADAS 在内的汽车应用,汽车应用必须稳定通过最低输入电压低至 3V 的冷车发动和停-启情况、以及超过 40V 的负载突降瞬态。正如在图 1 中能看到的那样,这是一款双通道设计,由两个高压 4A 通道组成,提供低至 0.8V 的电压,从而使该器件能够驱动目前可用和电压最低的微处理器内核。其同步整流拓扑在 2MHz 开关频率时提供高达 94.4% 的效率,而突发模式 Burst Mode®) 运行在无负载备用条件下保持静态电流低于 6.2µA (两个通道都接通),从而使该器件非常适合始终保持接通系统。

“”
图 1:LT8650S 原理图 ─ 在 2MHz 时提供 5V/5A 和 3.3V/4A 输出

LT8650S 的开关频率可以设定在 300kHz 至 3MHz 范围内,并可同步至这一范围。其 40ns 最短接通时间允许在高压通道以 2MHz 开关频率进行 16VIN 至 2.0VOUT 降压转换。其独特的 Silent Switcher® 2 架构使用两个内部输入电容器以及内部 BST 和 INTVCC 电容器,以最大限度减小热环路面积。LT8650S 的设计兼具控制良好的开关边沿和一种具整体接地平面的内部结构,并用铜柱代替了接合线,因此显著降低了 EMI / EMC 辐射。参见图 2以了解辐射输出特性。这种改进的 EMI / EMC 性能对电路板布局不敏感,从而简化了设计并降低了风险,甚至在使用两层 PC 板时也不例外。LT8650S 在整个负载范围内以 2MHz 开关频率切换时,能够非常容易地满足汽车 CISPR 25 Class 5 峰值 EMI 限制。扩展频谱频率调制也可用来进一步降低 EMI 水平。

“”
图 2:LT8650S 的辐射 EMI 图

LT8650S 使用内部顶部和底部高效率电源开关,单个芯片内集成了必要的升压二极管、振荡器、控制和逻辑电路。低纹波突发模式运行在低输出电流时保持高效率,同时保持输出纹波低于 10mVp-p。最后,LT8650S 采用小型耐热性能增强型 4mm x 6mm 32 引脚 LGA 封装。

结论

可以毫无疑问地说,ADAS 系统在汽车市场的渗透将不会很快结束。此外,很显然的是,找到一种满足所有必要的性能标准以不对 ADAS 系统造成干扰的电源转换器件,不是一项简单的任务。幸运的是,对这类系统的设计师而言,凌力尔特公司 (现隶属 ADI 公司) 的电源产品部提供了 “同类最佳” 的电源转换器,这些转换器极大地简化了这些设计师的任务,同时无需复杂的布局或设计方法,就可为设计师们提供需要的所有性能。

本文转载自凌力尔特
转载地址:https://mp.weixin.qq.com/s/braZqaRyXYBSWN6ccE57Qw
声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有,如涉及侵权,请联系小编进行处理。

围观 3

发现这些细节,拯救电路很多人都一样,我们很多工程师在完成一个项目后,发现整个项目大部分的时间都花在“调试检测电路整改电路”这个阶段,也正是这个阶段,很多项目没有办法进行下去,停滞在那边。想要快速完成项目,摆脱实验调试时的烦闷,苦恼不知道问题出在哪里,那就快点了解下面这些电路设计中的细节!

“”

(1)为了获得具有良好稳定性的反馈电路,通常要求在反馈环外面使用一个小电阻或扼流圈给容性负载提供一个缓冲。

(2)积分反馈电路通常需要一个小电阻(约560欧)与每个大于10pF的积分电容串联。

“”

(3)在反馈环外不要使用主动电路进行滤波或控制EMC的RF带宽,而只能使用被动元件(最好为RC电路)。仅仅在运放的开环增益比闭环增益大的频率下,积分反馈方法才有效。在更高的频率下,积分电路不能控制频率响应。

(4)为了获得一个稳定的线性电路,所有连接必须使用被动滤波器或其他抑制方法(如光电隔离)进行保护。

(5)使用EMC滤波器,并且与IC相关的滤波器都应该和本地的0V参考平面连接。

(6)在外部电缆的连接处应该放置输入输出滤波器,任何在没有屏蔽系统内部的导线连接处都需要滤波,因为存在天线效应。另外,在具有数字信号处理或开关模式的变换器的屏蔽系统内部的导线连接处也需要滤波。

(7)在模拟IC的电源和地参考引脚需要高质量的RF去耦,这一点与数字IC一样。但是模拟IC通常需要低频的电源去耦,因为模拟元件的电源噪声抑制比(PSRR)在高于1KHz后增加很少。在每个运放、比较器和数据转换器的模拟电源走线上都应该使用RC或LC滤波。电源滤波器的拐角频率应该对器件的PSRR拐角频率和斜率进行补偿,从而在整个工作频率范围内获得所期望的PSRR。

“”

(8)对于高速模拟信号,根据其连接长度和通信的最高频率,传输线技术是必需的。即使是低频信号,使用传输线技术也可以改善其抗干扰性,但是没有正确匹配的传输线将会产生天线效应。

(9)避免使用高阻抗的输入或输出,它们对于电场是非常敏感的。

“”

(10)由于大部分的辐射是由共模电压和电流产生的,并且因为大部分环境的电磁干扰都是共模问题产生的,因此在模拟电路中使用平衡的发送和接收(差分模式)技术将具有很好的 EMC效果,而且可以减少串扰。平衡电路(差分电路)驱动不会使用0V参考系统作为返回电流回路,因此可以避免大的电流环路,从而减少RF辐射。

(11)比较器必须具有滞后(正反馈),以防止因为噪声和干扰而产生的错误的输出变换,也可以防止在断路点产生振荡。不要使用比需要速度更快的比较器(将dV/dt保持在满足要求的范围内,尽可能低)。

(12)有些模拟IC本身对射频场特别敏感,因此常常需要使用一个安装在PCB上,并且与 PCB的地平面相连接的小金属屏蔽盒,对这样的模拟元件进行屏蔽。

本文转载自电子电路网
转载地址:http://www.cndzz.com/download/4105_0/219901.html
声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有,如涉及侵权,请联系小编进行处理。

围观 5

几乎每次的培训和交流都会有人问到“老师,有没有一种通用的接地方法可以参考啊?”答案是肯定的:“没有”。那咋办呢,我们总不能像中国的厨师一样,教徒弟炒菜时,用到的配料都是“少许”“颜色微黄”“微焦”等感觉性词语吧,当然不是。为了更好的明了接地的技巧方法,下文中将不再讲究任何的文字技巧,而是一针见血的道出接地问题的本质来。

接地方式←接地目的←接地的功能,所以采取哪种接地方式,要看地是哪类地,这类地的作用目的是什么,这两个问题解决了,接地方式则可水到渠成。

接地的目的决定了接地方式。同样的电路,不同的目的,可能都要采取不同的接地方式。这个观点一定记住。比如同样的电路,用在便携设备上,静电累积泄放不掉,接地的目的是地电位均衡;用在不可移动的设备上,一般会有安全接地措施,对静电泄放的接地目的是导通阻抗足够低,尤其是对于尖峰脉冲的高频导通阻抗。

以下讲解地的注意事项分成几个独立的观点分别介绍,每一条的内容虽然简单,建议一定反复读上N遍,象面对一杯好茶,让心跳在60bpm以下的状态,细细的品,感觉其中的美感和内涵。然后才可能从简单的词语中悟出深刻的道理来。

1、从性能分,接地分成四类

安全接地、工作接地(数字地、模拟地、功率器件地)、防浪涌接地(雷击浪涌、上电浪涌)、防静电接地。
前文书中讲过,“接地的目的决定了接地方式”,目的即指其实现的功能。基本上所有的接地都可以归结到这四类里面来。每个接地前都要先明确该接地属于哪一种。

2、接地追求的目标是地阻抗低、地稳定、地均衡

地阻抗低很好理解,用粗的线缆即可,但有一个问题一定不能忽视,比如我通过一个大电感接地了,如果地线上跑的地电流的波动频率是0.00000001Hz,这个大电感的感性效应表现得就很不明显,等同于直接接地了,但如果波动电流是1000000Hz的话,感抗=jωL=j2πfL,就显得很大了,这种情况下,相当于高频接地很差。各位看官可能会说了,你胡来吧你,谁会用个大电感接地呢,第一是在某种状态下会有这种方式的,第二是即使不这样接个电感,普通电缆的走线电感在高频下也是不容忽视的。总结为一句话,低频接地≠高频接地。即低阻抗的接地要分析是属于高频还是低频的接地。

地稳定是比较好理解的,一般来说,接地阻抗足够低的话,地电流泻放容易,且不会在底线上产生啥子压降,就如一个超大的电容,电荷的海洋,具有无限宽广的胸怀,多少进来都波澜不惊。

地均衡比较容易被忽视,对于一个信号来说,有用部分是两条线上的压差,如果地线漂移了,两条线上对地线的压差同等的上升或下降,即差模电压值维持不变,共模电压发生变化,其实电路功能是照常实现的。就像水涨船高,您比我高3cm,站在船上,船上浮了,您依然还是高我3cm。这种情况在静电防护的时候常用到,一个静电脉冲通过空气打到电路板上,针对局部的电路,距离远近的不同,肯定会导致产生静电感应的压差。这时候用一块金属板隔一下的话,即使该金属板浮空,对金属板后面的电路板来说,感应的将是均匀的电场,虽然感应干扰仍然存在,但起码电路上是基本均衡的。当然如果此金属板接地更好啦。当然共模电压一般不会维持住,因为传输线的阻抗不均匀,往往会转成差模电压干扰,地均衡的问题最好不要让我们面对,但没办法的时候,如浮地设备,不得不受到静电冲击的电路板,防护时候要考虑地均衡问题。

3、共地阻抗耦合干扰

共地阻抗耦合干扰是接地里面每天都要面对的核心问题,并且几乎逃避不开。就像电影院里散场的时候,你从最里头的一号厅出来,没几个人,走来很通畅,突然二号厅也散场了,一下子通道就拥挤了,再继续前行,坏了,三号厅正在放观众入场,一下子,人流就波动起来了。这和共地阻抗是一个原理,通道相当于地线,人相当于电流。如果一、二、三号厅流动的人差不多,相互之间影响不太大,但如果3号厅是大厅,人员是一、二号厅的好多倍,那进出三号厅的人员将会对一、二号厅人员流动速度的影响很大。一、二、三号艇的客人都要走过的这段路就成了共地阻抗。

4、较通用型的接地方法

这个标题用了个“较”字,是有原因的,因为通用的接地方法根本不存在,这只是个基础的模型,真正使用中的时候,还需要结合实际情况灵活变通处理,就像语言,同样一句话“你讨厌”,用不同语气讲出的时候,传递的信息可是千差万别。基本思路是,在设计上,把安全保护地、工作数字地、工作模拟地、工作功率地、雷击浪涌地、屏蔽地先确保各自独立的单独连接,最后在系统联调的时候,再根据各地之间要解决的问题,即根据接地的目的,将这几个地按照下列的之间的联接方式处理下,连接方式包括:

a地——地间黄绿导线直联

这种接法最好理解,就是简单的使两个地可靠的低阻抗导通。但切记,此种接法仅限于中低频信号电路地之间的接法。因为这类导线上有一定的走线电感和走线电阻,对高频波动地电流,在电感作用下,电缆起到的是大阻抗的作用,相当于低频接地,高频下大阻抗接地了,基本不能实现高频下的可靠导通。

b地——地间宽扁平电缆直联

扁平电缆主要是解决上面导线直联不能解决的问题,静电测试工作台的接地电缆不用直线就是这个道理,它在高频下可以实现地阻抗对地导通。

c地——地间大电阻连接

大电阻的特点是一旦电阻两端出现压差,就会产生很弱的导通电流,把地线上电荷泻放掉之后,最终实现两端的压差=0V,这个特点在希望电荷泻放,但又不希望快速泻放的时候,会表现得淋漓尽致。生产工作现场的防静电台垫,导通电阻一般是106-109欧,就是这个目的。防静电台垫相当于是工作电路板的地与保护大地间的大电阻。c地——地间电容连接电容的特性是直流截止,交流导通,对希望实现这类功能的场合可以考虑采取此方法。比如一个开关电源供电的产品,外壳和保护接地连接,里面的电路板上的地有杂乱波动干扰,但又无处泻放的话,在24V、12V、5V等的直流电源地与保护接地间跨接大电容,波动可以被泻放掉,但直流成分能保证是较稳的;注意,这种情况下,保护地和外壳地的稳定不能保证的话,效果可能会适得其反欧。

d地——地间磁珠连接

在这里,磁珠的特性需要明确一下,很多工程师经常把磁珠与电感划等号,这是根本性错误。磁珠等同于一个随频率变化的电阻,它表现的是电阻特性,是耗损性质的;电感则是储能性质的,相当于销峰填谷。所以跨接磁珠的地之间一般是有快速小电流波动的状态,因为磁珠会饱和,电流太大了,它消耗不了。一般用在弱信号的地——地之间。

e地——地间电感连接

电感具有抑制电路状态变化的特性,通过电感的连接,可以销峰填谷,对于有较大电流波动的地——地,跨接电感可以解决这个问题。

f地——地间小电阻连接

小电阻要解决的问题是增加了一个阻尼,阻碍地电流快速变化的过冲,在电流变化时候,使冲击电流上升沿变缓,相当于晶振输出端、总线输出端为减少过冲振铃的匹配电阻。

5、安全地、防雷击浪涌接地的接法

因为雷击浪涌、安全地的电流一般会远大于信号电流对人的危害,这两个接地建议分别单独接到大地,在真正的大地处单点相接,尤其是防雷击接地。

本文转载自贤集网
转载地址:http://bbs.xianjichina.com/forum/details_57546
声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有,如涉及侵权,请联系小编进行处理。

围观 8

在现在产品中,电磁干扰问题越来越成为产品关注重点,也成为产品进入国外市场的重要瓶颈。由于中国长期忽略这块,以及这块的测试设备及其昂贵等众多因素,国内在这块领域中发展相对缓慢。

了解这块的工程师少之又少,成为大多数工程师及国内企业研发部最为头疼的事情,它们在解决这类产品问题的时候,大多都是盲人摸象,走了很多弯路之后,才勉强把问题解决。这类经验并且具有不可复制性,在开发下面产品中依旧会面临各种问题,而且即使在解决了的产品中,留的货量不够,在批量生产的时候,随机性较大。

电磁兼容的问题真的又这么难么?

“1”

今天让我们抛开事物的谜团,掌握其本质,彻底了解和掌握电磁兼容产生的原因并找到解决的方法,让工程师睡个安稳觉。

破解模拟硬件设计有三大定律:

第一,源、回路、阻抗;
第二,电路是一个波形的整形,从无用的波形最终整形有用的波形,包括形态、相位的整形;

第三,对元器件的参数、封装、鲁棒性、成本要熟知,这样才把产品设计在临界区。

我们在此可以运用第一大定律源、回路、阻抗来融入到产品设计中,用第二大定律的波形测量分析来辅助我们整改电磁兼容问题,用第三大定律的元器件,封装来优化电磁兼容问题。

电磁兼容,简称EMC(electromagnetic compatibility)。它包含两个方面,一个是干扰其他的电器产品,简称EMI(electromagnetic interference),即电磁干扰;另一个是被其他电器产品干扰,叫抗干扰性,我们用EMS(electromagnetic susceptibility)表示。

要想解决电磁兼容问题,我们要先理解频率带宽的问题。通俗讲带宽是信号的频率,而信号频率本质是信号的速度。那么信号速度的本质是什么?是信号的上升斜率和下降斜率。信号斜率(包含信号的上升斜率和下降斜率,这里统称),信号斜率越慢,则其绝大多数只能通过导线传播,它的频率一般在0-30M Hz之间,这就是我们传导测试重点测试的地方。信号的斜率越快(一般的频率在30M Hz-3Z Hz之间,这就是所谓的带宽)则可以借助天线向空间辐射,这样的天线可以包括电源的引入线,包括元器件的圆角,包括走线的直角等。

测量哪些内容?

EMC测量的内容包含2个方面,第一传导测试,第二辐射测试。传导测试主要测量引出线,辐射测试主要测试空间4米天线、10米天线两种。

什么叫ESD测试?
ESD测试是关于静电测试,当静电打向产品的时候,产品不会出现异常跑飞的现象的测试。

什么叫噪音?

一般来讲,我们把输入的无用信号,统称为噪音。最早的时候,由于电源发出一些声响,我们把这样的声响称为噪音,但是实际上人耳接受频段的能力是有限的,2Hz-2KHz。实际上更多的频段的信息(无用信号)是人耳听不见的,因此我们把凡是对器件本身无用的信号称为噪音。简而言之,一切无用的波形皆为噪音。

那么,构成干扰要有三要素,骚扰源,传播途径,敏感设备。骚扰源分两种,一种是电场的骚扰源,一种是磁场的骚扰源。

从第一大定律去分析,源--这里的源指的骚扰源,骚扰源包括电场引起的扰动,磁场引起的扰动,统称电磁场引起的扰动。那么从这个频段角度来说,30M以下的传导扰动和30M以上的辐射扰动。回路--那么30M以下的传导扰动,它的传播路径(回路)是引线,也包含PCB走线;30M以上的扰动,它的传播路径是空间,由天线发射和接收的空间。阻抗--阻抗就是说在回路中对波形衰减的能力称为阻抗。从两个大方向去解答,依旧从传导和辐射来分析。首先,讨论下传导阻抗的问题。传导的阻抗可以在电路中有两个方面,第一个方面是差模干扰的问题,第二个是共模干扰的问题。

差模干扰是指两条电源线之间(wire to wire)的,主要通过选择合适的电容(X电容,也称安规电容),和差模线圈来进行抑制和衰减。共模干扰则是两条电源线分别对大地(简称线对地)的,主要通过选择合适的电容(Y电容,也是安规级别的),和共模线圈来进行抑制和衰减。我们常用的低通滤波器,一般会同时具有抑制共模和差模干扰的功能。

如下图,低通滤波器原理图。

“”
低通滤波器原理图

如图1,3为差模电容,2为共模电感,4为共模电容。

1,2,3共同组成的叫π型滤波器,1,3组成的电容主要是滤两根线之间的信号差,因此而得名。一般这两个电容的取值在0.22 uf-1.5 uf。在出现干扰超标的时候,一般解决方法是把这两个电容的值加大,但随着电容容值加大,会导致漏电流加大,这点需要注意。

由于差模电容是接在L和N线两线之间,那么它和后面的负载实际上是并联关系。又由于电容对低频次的信号有很强的阻碍作用,对高频次的信号有很强的导通作用,及低阻抗作用。当50Hz-60Hz低频交流信号流过电容两端的时候,由于电容的阻抗表现极其大,所以电容不起任何作用,等于没有这个电容。当差模信号通过的时候(差模信号一般是高频无用信号),那么电容表现为通路,阻抗很小,在高频信号下,则电容相当于将后面负载短路,那么后面负载就不会受高频信号的干扰。如图差模电容工作原理所以。以上是运用张老师第一大定律源、回路、阻抗来分析差模电容特性。

“”
差模电容工作原理

2为共模电感,这个上面有两根独立的线圈,方向相反的绕制在同一个圆形闭合的磁芯上。由于这两根导线大小相等,反向相反,因此产生的磁场相互抵消了。共模电感和后面中的负载是串联关系,当有差分信号通过时(差模信号一般是高频无用信号),由于电感对电流的变化有阻碍作用,那么此时电感表现为大电阻,而后面负载类似于小电阻,则电感承担了绝大多数高次谐波的压降。根据电阻分压原则,后面的负载分得的电压接近于零。当50Hz-60Hz低频交流信号流过电感两端的时候,由于电感的感抗表现极其小,所以电感几乎不起任何阻碍作用,等于没有这个电感。所以我们说这个电感对差分信号起作用。如图共模电感工作原理所示。以上仍然是运用张老师第一大定律源、回路、阻抗来分析共模电感特性。共模电感的感量选型一般在几百微亨到几毫亨级别。

“”
共模电感工作原理

4为共模电容,这两个电容由于分别连接着L和N两根线且对大地的(不是电路中的地,一般电路中的地为GND,也为浮地,而共模电容的地为大地earth),呈Y型状,因此而得名。由于Y电容一端连接着大地,那么它和后面负载实际上并联关系的。如图共模电容工作原理,当50Hz-60Hz低频交流信号流过Y电容两端的时候,由于电容的阻抗表现极其大,相当于断路,不导通。当共模信号通过的时候(共模信号一般是高频无用信号),那么电容表现为通路,阻抗很小,高频信号通过Y电容到大地,那么后面负载就不会受高频信号的干扰。以上仍然是运用张老师第一大定律源、回路、阻抗来分析共模电容特性。共模电容的取值一般在2200pF-6800pF,其值越大,越容易解决干扰问题,但是漏电也越大,取值要甚重。

“”
共模电容工作原理

当电路中的正常电流流经共模电感时,电流在同相位绕制的电感线圈中产生反向的磁场而相互抵消,此时正常信号电流主要受线圈电阻的影响(和少量因漏感造成的阻尼);当有共模电流流经线圈时,由于共模电流的同向性,会在线圈内产生同向的磁场而增大线圈的感抗,使线圈表现为高阻抗,产生较强的阻尼效果,以此衰减共模电流,达到滤波的目的。

一般滤波器不单独使用差模线圈,因为共模电感两边绕线不一致等原因,电感必定不会相同,因此能起到一定的差模电感的作用。如果差模干扰比较严重,就要追加差模线圈。

文/张飞
来源:硬件十万个为什么

围观 5

EMC主要是通过测试产品在电磁方面的干扰大小和抗干扰能力的综合评定,是产品在质量安全认证重要的指标之一。很多产品在做产品安全认证时都会遇到产品测试不合格的情况,尤其是在电磁兼容测试(即EMC测试)出错频率更是普遍。当产品一旦测试不合格,那么随之而来的肯定是EMC整改通知书。在EMC整改过程中很多管理人和技术人员并不太明白该从何处入手,今天我们就来分析EMC整改常遇到的问题和一些整改建议。

首先我们来从EMC测试项目构成说起,EMC主要包含两大项:EMI(干扰)和EMS(产品抗干扰和敏感度)。当然这两大项中又包括许多小项目,EMI主要测试项:RE(产品辐射,发射)、CE(产品传导干扰)、Harmonic(谐波)、Ficker(闪烁)。EMS主要测试项:ESD(产品静电)、EFT(瞬态脉冲干扰)、DIP(电压跌落)、CS(传导抗干扰)、RS(辐射抗干扰)、Surge(雷击)、PMS(磁场抗扰)。通过这些测试项目我们不难看出EMC测试主要围绕产品的电磁干扰和敏感度两部分,如果一旦产品不符合安全认证标准需要EMC整改的时候我们可以通过降低其材料和零部件进行整改。

一、EMC整改意见:

1、在拿到整改意见书以后,需要提前定位好EMC整改计划。没有定位好计划就去盲目的整改产品就像无头的苍蝇一样到处乱动,这样只会增加整改的成本。

2、定位手段,对于这里小编觉得主要可以分为两点。第一:直觉判断,需要完全依托工程师的直觉和经验来进行判断。第二:比较测试,根据测试仪器所提供的数据来进行分析问题。

二、EMC整改流程:

1、RE超标整改流程:

“1”

2、电线电缆超标整改流程:

“2”

3、信号电缆整改流程:

“3”

4、屏蔽体泄漏整改流程:

“4”

三、EMC整改的一些小建议

1、电容的滤波作用

“5”

“6”

即频率f越大,电容的阻抗Z越小。
当低频时,电容C由于阻抗Z比较大,有用信号可以顺利通过;
当高频时,电容C由于阻抗Z已经很小了,相当于把高频噪声短路到GND上去了。

2、电容滤波在何时会失效

整改中常常会使用电容这种元器件进行滤波,往往有“大电容滤低频,小电容滤高频”的说法。
以常见的表贴式MLCC陶瓷电容为例,进行等效模型如下:

“7”

容值10nF,封装0603的X7R陶瓷的模型参数如下:

“8”

由于等效模型中既有电容C,也有电感L,组成了二阶系统,就存在不稳定性。对电路回路来说,就是会发生谐振,谐振点在如下频率处:

“9”

下图是谐振曲线的示例:

“10”

即常说的在谐振点前是电容,谐振点之后就不再是电容了。

3、LC滤波何时使用

如果串联电感L,再并联组成C,就形成了LC滤波:

“11”

单独一个电容C是一阶系统,单独一个电感L也是一阶系统,在幅值衰减斜率是-20dB。但LC组成的二阶系统,幅值衰减斜率是-40dB,更靠近理想的“立陡”的截止频率的效果,即滤波效果更好。

“12”

4、PWM频率到底是多少

往往提到PWM,比如会说用20kHz PWM驱动电机等。但实际上,这个20kHz仅代表PWM的脉冲周期是50us:

“13”

那么所谓的20kHz PWM在频域上的频率点落在哪里呢,如下公式:

“14”

对于阶跃信号来说,由于上升时间tr无穷小,则频率f无穷大。当频率高了之后,寄生参数则不能在忽略,会引发很多谐振的问题。

从信号上来看,就是很陡峭的阶跃信号会有过冲和振荡的问题。简单来说就是频率f越大,则噪声所占的频率就会越宽泛,即EMC特性就会越差。

5、如何将原理图和PCB对应起来

由于细分工种的问题,原理图和PCB被割裂开来,由两组人进行分工作业:

“15”

例如在原理图上有如下的电路:

“16”

其隐含一个问题就是在PCB上其实V1的负极和C1的负极是有一条线(PCB layout工具软件中用的词比较准确,Trace,踪迹/轨迹)。

往往在设计阶段A->B->C是都会关注的。如果EMC出现问题,除了要在原理图上查找电路参数的问题,还需要特别关注C->D,即回流路径。

“17”

如果回流路径不顺畅,会造成信号的畸变:

“18”

比如在EMC试验时,MCU的ADC采集到的信号被干扰到了,则除了在原理图上分析外,在PCB上讲该信号高亮出来,然后再耐心寻找该信号的回流路径是否有不顺畅的地方:

“19”

对着信号线头脑中想象回流路径,有点意识流的感觉。

6、总结

“20”

来源:微波射频网

围观 21

作者: Paul Pickering

“”
图1:物联网工厂糅合了新老技术。这是一个具有挑战性的EMC环境,特别是对于低功耗的无线设备。(图片来源:德州仪器)

我们都知道,工厂是一个嘈杂的地方:因噪音引起的听力受损是美国最常见的职业病之一,但处于这种风险之中的不仅仅是人类。有些看不见也听不到的电子噪音会对传感器和通信系统造成严重的破坏,尤其是工业物联网(IIoT),即工厂4.0。

为何这种电子“听觉损耗”趋势在不断上升?IIoT的目标是利用大数据来获取行业专家所谓的“可行的见解”,提高运营效率、节约资金、并在事故发生前预测故障。若要收集大量的数据并将其放入云端,首先要添加数千个灵敏的传感器,以监控工业流程的各个方面。且这些传感器必须在一个从未进行针对性设计的环境中工作。

EMC和连接工厂

维基百科将电磁兼容(EMC)定义为“电子工程的分支,与电磁(EM)能量非目的性的生成、传播和接收有关,可能会导致不良的影响,如电磁干扰(EMI)或对操作设备的物理损坏等”。EMC有两种主要的影响因素:EM辐射或非预期EM能量的生成,以及EM的磁化率,即设备受EM能量影响的程度。我们可以根据EM传播的方式——辐射或传导,将其分为四个不同的研究方向及四组问题。图2展示了EMC传播的机制。

“”
图2:电磁辐射传导机制。(图片来源:维基百科)

为何工厂会处于一个具有挑战性的EMC环境中?图1展示了一个典型的IIoT场景:在低功耗低电压模拟和数字技术发展之前,工厂安装了大量有线和无线传感器及通信网络。这些设备当下的设计通常需要1V或更少的功率,并有可能受到电源线和接地线路毫伏的干扰。更糟糕的是,由于最初的工厂设计师没有预见到IIoT低功率无线设备的广泛应用,因此便没有优先考虑在GHz范围内尽量减少放射。

“”
图3:工业环境受到宽带EMI的影响:一些样品来源如图所示。(图片来源:Compliance-club.com)

工厂通常有许多机器,可能为低功率和无线设备造成一些EMC问题。例如,电弧焊机可能成为辐射和传导干扰源:从弧脉冲发出辐射射频(RF)能量,从电源线和接地线路的电压谐波和波动中传导能量。同时,其他的机器可能还受到放射和磁化问题的干扰。图3展示了EMI及其频率的一些常见来源。

一些适用的EMC标准

正如预期,由于嘈杂的设备可能会造成很大的影响,世界各国政府已制定了管理EMC性能的标准。美国联邦通信委员会(FCC)为电信设备设置了最低的合规标准。FCC规范的第15部分便规定了为防止有害的射频干扰所需要进行的排放测试。

在欧盟,R&amp TTE指令99/5/EG适用于所有无线电控制产品。加拿大工业协会有适用于无线电设备的通用合规要求(RSS-GEN),其他国家也有类似的机构。

监管机构发布的标准涵盖每个EMC类型允许的级别和批准的测试程序。在公司推出新产品之前,政府机构通常需要对相关标准进行测试和认证。

不同的标准适用于不同的行业,但前提是遵守一些国际权威的标准,如国际电工委员会(IEC)等。对于工业设备,IEC 61000-6-2涵盖了EMC,以IEC61000-6-4作为通用的放射标准。许多应用程序有其自身的标准:如IEC 60974-1特别适用于电弧焊接机器人的电源供应,IEC 60974-10涵盖了弧焊机器人EMC的要求。

EMC和无线网络

尽管工业有线网络已存在了数十年,并包括以太网、CAN等标准,但是随着低成本低功耗无线网络的兴起,连接IIoT工厂变得更加容易。在工业应用中使用无线解决方案的原因在于:

  • 更大的灵活性,移动设备的位置更加便捷,以及与智能手机和平板电脑的连接更方便
  • 布线的成本降低
  • 安装和调试更加快速简便,尤其是在偏远或难以访问的地区
  • 远程更新的灵活性和便利性更大
  • 可以轻松将设备集成至网络中

在过去的十年中,连接工厂已经采用了一些无线标准。下表展示了IIoT市场一些主要的竞争标准及其应用:

“”

基于IEEE 802.15.4的网络对IIoT架构师特别有吸引力,因为它们更适合于小数据包和低更新率的IIoT传感器节点。另一方面,802.11 WLAN设备必须适应视频流这样的应用程序,因为这将极大地增加复杂性和功耗。

许多无线产品可以在单个设备上处理一个或多个IIoT协议。例如,德州仪器的CC2630无线微控制器单元(MCU),适用6LoWPAN、ZigBee和TI自身的SimpleLink功能。

该设备属于CC26xx系列,有较好的成本效益,是超低功耗、2.4-GHz射频的设备。CC2630包含一个32位的ARM Cortex-M3处理器内核,以48 MHz运行,加上一个集成了ARM Cortex-M0的RF块。它还包括一个超低功耗的传感器控制器,用于与外部传感器进行接口,并在系统睡眠模式下收集模拟和数字数据。该功能也使其非常适合于IIoT低功耗远程传感器节点应用程序。

将EMC问题最小化的设计

为了获得良好的EMC性能,设计需要采用多层方法,关注工厂层级的性能,如接地和配电、单个集成电路等。由于许多IIoT的安装都是经过改造的,所以要完成这项任务变得更加困难,因此,若要重新装配工厂基础设施等进行大规模变更,则很难实现,甚至不可能完成。

EMC设计:工厂层级

在工厂层级,良好的EMC性能要从配电系统的设计开始。工厂通常使用高压AC和DC系统,这就会产生许多与电磁相关的事件,如电力网络操作或功率因数电容器开关的瞬变,自弧触点快速瞬变,以及大功率接触器线圈磁场倒塌。直接或间接的自然事件,如雷击等,也可导致工厂设备的电压瞬变。

在车间里,旋转电机的使用无处不在,从CNC机器到泵或工业机器人等。而它们也是EMI的主要原因,尤其是“弧和火花”刷刷过的DC电机;即使是无刷电机(BLDC)也有PWM控制,可以产生高速的开关瞬变。现场巡视可以帮助识别射频噪声的来源,并将主要的触发点隔离和屏蔽。

“”
图4:“我不知道为什么会有EMC问题”(图片来源:ThereIFixedIt.com)

现代工厂通常还有几英里通过管道连接的线路,环绕在地板、内墙和天花板上。在旧式的安装中,这些线路可能被随意安装,且使用年代之久,如图4所示。从高压、高电流功率信号,到低层传感器的输入和输出,这些线路发挥着重要的作用。在工厂层级,线路可以看作一个大天线,从内部和外部传输和接收辐射电力噪声。将长线运行所形成的环面积最小化则有助于降低噪音。

布线也可以传播噪音。例如,电感耦合噪声可以从一根电线传到下一根。屏蔽电缆以防护噪声敏感信号是减少噪声的重要因素。尽管最初的成本很高,但若在安装之后才隔离及解决EMC问题,可能成本将更高。例如,Belden的9536电缆包括6个24 AWG的绞合镀锡铜导体、半硬质的PVC绝缘以及可以100%覆盖的防漏线。对于在5e 100BaseTX网络通信中使用的电缆槽,Belden的796x电缆提供了四个导体和一个编制屏障,具有工业级的防晒和耐油PVC外层。

其他的供应商,如Glenair,提供了一系列灵活的编织套管、管道和配件,以提供EMI保护。例如,Glenair的Armorlite是镀镍不锈钢EMI/RFI编织外壳,针对260°C高温的应用程序而设计。

EMC设计:系统层级

图5展示了典型的IIoT节点级设备的框图。它包含了引起EMC问题的各种组件:通过电力供应或有线通信线路,噪音可以进入或消失,且无线接口可以接收或发射辐射噪声。

“”
图5: 不管是放射还是磁化,IIoT传感器节点可能是EMC问题的来源。(图片来源: Mouser Electronics)

为了减少磁化率或放射,在噪音进入或离开开发板的位置点(连接器)时便终止噪音是一种非常有效的方法。

过滤后的连接器将标准连接器与EMI/RFI抑制组件结合在一起,可以帮助解决EMC问题。过滤器元件封装在连接器中,将可用的PCB区域最大化,其相比标准的连接器和离散过滤组件,大量减轻了重量。

例如,Harting的D-sub连接器使用铁氧体过滤器块来阻止高频。这种D-sub形状因子在工业应用中广泛使用,且Harting连接器有第9、15、25和37接触版本。

“”
图6:密封过滤器有效地过滤了DC电线噪声。(图片来源: Mouser Electronics)

通常,有必要为高压DC输电线提供离板EMC过滤。如图6所示的API 51f-726-002 EMC过滤器则针对螺纹孔或通孔安装而设计。在严酷的工业环境中,两端的树脂密封可以提供保护。在选择C、L或Pi滤波器时,它们能有效地过滤DC输电线的噪声,并能处理高达500V DC/220 V AC(400 Hz)的电压。

集成电路解决方案也可以帮助减少EMC的问题。德州仪器的TPDxF003系列产品是一组过滤装置,旨在减少EMI的辐射,并提供系统级的静电放电(ESD)保护。每一种设备都可以在超过IEC 61000-42国际标准规定的最大水平范围内消除ESD冲击。这种过滤结构通过高频滚降减少EM辐射:该设备的特点是200MHz的3db带宽,且在1GHz下的信号衰减超过25dB。4通道、6通道、8通道的设备都可以使用。

为防止传入的辐射EMI干扰,许多设计都通过外壳接地屏蔽了内部电路,形成了一个法拉第笼:这也可以防止内部产生的辐射进入外部环境。

EMC设计:设备层级

进一步深入到电路板和设备层级,PCB区域内的辐射或传导干扰可能会引起同一板上另一个区域出现问题。例如,通过数字时钟脉冲或开关电源的高息差切换瞬变可能引起低层模拟测量出现误差。

在电路块中,良好的布局和设计技巧是确保电路信号不被电容或电感耦合到另一个电路的关键。其中一些技巧是:

  • 降低电压和电流上升和下降的时间,以减少急剧的转换和高频内容
  • 减少电路板的磁环表面积
  • 使用“星状”布局,将高电流接地与数字特别是模拟接地进行分离
  • 彼此之间直接运行电源线和接地线,使环路面积最小化并减少阻抗
  • 使用具有高频振动特性的时钟来传播频率谱,减少辐射电磁干扰
  • 在噪声组件中使用接地层,如微控制器

还必须考虑许多因素,包括组件放置和封装限制,因此需要历经设计迭代才能获取一个可接受的解决方案。

总结

本文是对一个复杂主题的简要概述。要了解更多信息,请点击本文档中的链接,或者从我们的供应商处查看相关资讯。

德州仪器为减少EMI,在PCB设计准则上开发了一个有用的应用节点。TDK的“EMC指南”讨论了一些被动元件在获得良好的EMC性能方面所发挥的作用,如铁氧体、电容器、共模过滤器和变电阻等。Analog Devices,即另一个Mouser供应商,有一个关于EMI、RFI和屏蔽技术的教程,以帮助保护敏感的模拟电路。

工业物联网,也被称为“工厂4.0”,将低层次、低功耗、模拟数字和无线功能集成到一个电磁环境中。为获得良好的EMC性能,设计需要关注各个层级的细节,从工厂本身到独立的开发板布局等。

结语

作为自由技术作家,保罗•皮克林对许多话题展开过编写,包括:半导体组件与技术、被动元件,封装、电力电子系统、汽车电子、物联网、嵌入式软件、EMC、替代能源等。保罗有逾35年的电子行业工程和市场营销经验,包括汽车电子、精密模拟、电力半导体、嵌入式系统、逻辑设备、飞行模拟、机器人技术等。他在数字和模拟电路设计、嵌入式软件和Web技术方面也有丰富的一手经验。他来自英格兰东北部,生活和工作轨迹遍布欧洲、美国和日本。他具有伦敦大学皇家霍洛威学院物理与电子系理学士学位(荣誉),并在塔尔萨大学毕业。

原文链接:http://www.mouser.cn/applications/industry-4-0-noise/

围观 6