ADC

ADC种类分不清?技术指标一团浆糊?来看看吧

ADC转换器的分类

下面简要介绍常用的几种基本原理及特点:积分型、逐次逼近型、并行比较型/串并行型、Σ-Δ调制型、电容阵列逐次比较型及压频变换型。

(1)积分型

揭晓ADC的“前世今生”:RF采样ADC给系统设计带来独特优势

数据转换器充当现实模拟世界与数字世界之间的桥梁已有数十年的历史。从占用多个机架空间并消耗大量电能(例如DATRAC 11位50kSPS真空管ADC的功耗为500W)的分立元件起步,数据转换器现已蜕变为高度集成的单芯片IC。从第一款商用数据转换器诞生以来,对更快数据速率的无止境需求驱动着数据转换器不断向前发展。ADC的最新化身是采样速率达到GHz的RF采样ADC。

单片机如何通过ADC模块采集模拟信号?

单片机的模数转换接口(ADC - Analog-to-Digital Converter)将外部的模拟量信号转化为数字信号,因单片机属于数字器件,需将模拟信号转化为数字信号才能够进行处理。目前市场上的很多单片机都自带ADC转换接口,若无ADC转换接口,可以使用ADC模数转换芯片外扩。

S参数究竟是什么?详细为您解惑!

S参数究竟是什么?

现代高速模数转换器(ADC)已经实现了射频(RF)信号的直接采样,因而在许多情况下均无需进行混频,同时也提高了系统的灵活性和功能。

传统上,ADC信号和时钟输入都采用集总元件模型来表示。但是对于RF采样转换器而言,其工作频率已经增加至需要采用分布式表示的程度,那么原有的方法就不适用了。

本系列文章将从三个部分入手,说明如何将散射参数(也称为S参数)应用于直接射频采样结构的设计。

起决定性作用的S参数

S参数就是建立在入射微波与反射微波关系基础上的网络参数。它对于电路设计非常有用,因为可以利用入射波与反射波的比率来计算诸如输入阻抗、频率响应和隔离等指标。而且由于可以用矢量网络分析仪(VNA)直接测量S参数,因此无需知晓网络的具体细节。

图1所示的是一个双端口网络的例子,其入射波量为ax反射波量为bx,其中x是端口。在该讨论中,我们假设被测器件是线性网络,因此适合采用叠加法。

如何正确设计高性能转换器?方法要点都在这里

现代SAR和∑-Δ型模数转换器(ADC)的主要优势之一是在设计中考虑了易用性。不仅简化了系统设计人员的工作,而且可以复用参考设计。在很多情况下,您可以构建一个参考设计长时间用于不同场合的应用。精密测量系统的硬件保持不变,而软件实现可适应不同系统的需要。

使用精密ADC进行设计有问题?最关键的答案都在这里!

高分辨率Δ-ΣADC中有关噪声的十大问题

任何高分辨率信号链设计的基本挑战之一是确保系统本底噪声足够低,以便模数转换器(ADC)能够分辨您感兴趣的信号。例如,如果您选择德州仪器ADS1261(一个24位低噪声Δ-ΣADC),您可在2.5 SPS下解析输入低至6 nVRMS,增益为128 V / V的信号。

【资料下载】利用噪声频谱密度评估软件定义系统中的ADC

作者:David Robertson和Gabriele Manganaro ADI公司

【资料下载】如何在Cortex® M7 MCU中使用差分ADC?

简介

【资料下载】高精度SAR模数转换器的抗混叠滤波考虑因素

作者:Patrick Butler

简介

ADC时钟极性与启动时间

根据定义,高速模数转换器(ADC)是对模拟信号进行采样的器件,因此必定有采样时钟输入。某些使用ADC的系统设计师观测到,从初始施加采样时钟的时间算起,启动要比预期慢。出人意料的是,造成此延迟的原因常常是外部施加的ADC采样时钟的启动极性错误。

许多高速ADC的采样时钟输入具有如下特性: