P0口作为I/O口输出的时候时,输出低电平为0 输出高电平为高组态(并非5V,相当于悬空状态,也就是说P0 口不能真正的输出高电平)。给所接的负载提供电流,因此必须接上拉电阻(一电阻连接到VCC),由电源通过这个上拉电阻给负载提供电流。
  
P0作输入时不需要上拉电阻,但要先置1。因为P0口作一般I/O口时上拉场效应管一直截止,所以如果不置1,下拉场效应管会导通,永远只能读到0。因此在输入前置1,使下拉场效应管截止,端口会处于高阻浮空状态,才可以正确读入数据。  
  
由于P0口内部没有上拉电阻,是开漏的,不管它的驱动能力多大,相当于它是没有电源的,需要外部的电路提供,绝大多数情况下P0口是必需加上拉电阻的。
  
1.一般51单片机的P0口在作为地址/数据复用时不接上拉电阻。
  
2.作为一般的I/O口时用时,由于内部没有上拉电阻,故要接上上拉电阻!!
  
3.当p0口用来驱动PNP管子的时候,就不需要上拉电阻,因为此时的低电平有效;
  
4.当P0口用来驱动NPN管子的时候,就需要上拉电阻的,因为此时只有当P0为1时候,才能够使后级端导通。 简单一点说就是它要驱动LCD显示屏显示就必须要有电源驱动,否则亮不了,而恰好P0口没有电源,所以就要外接电源,接上电阻是起到限流的作用;如果接P1、P2、P3端口就不用外接电源和电阻了。
  
P0口是开漏的,不管它的驱动能力多大,相当于它是没有电源的,需要外部的电路提供,绝大多数情况下P0口是必需加上拉电阻的;5、51单片机的P0口用作数据和地址总线时不必加上拉电阻。
  
有些IC的驱动能力并不强,如果P0口作为输入而加了不必要的上拉,有可能驱动IC无法将其拉回到低电平,从而使输入失败!
  
如果是驱动led,那么用1K左右的就行了。如果希望亮度大一些,电阻可减小,最小不要小于200欧姆,否则电流太大;如果希望亮度小一些,电阻可增大,增加到多少呢,主要看亮度情况,以亮度合适为准,一般来说超过3K以上时,亮度就很弱了,但是对于超高亮度的LED,有时候电阻为10K时觉得亮度还能够用。通常就用1k的。对于驱动光耦合器,如果是高电位有效,即耦合器输入端接端口和地之间,那么和LED的情况是一样的;如果是低电位有效,即耦合器输入端接端口和VCC之间,那么除了要串接一个1——4.7k之间的电阻以外,同时上拉电阻的阻值就可以用的特别大,用100k——500K之间的都行,当然用10K的也可以,但是考虑到省电问题,没有必要用那么小的。
  
对于驱动晶体管,又分为PNP和NPN管两种情况:对于NPN,毫无疑问NPN管是高电平有效的,因此上拉电阻的阻值用2K——20K之间的,具体的大小还要看晶体管的集电极接的是什么负载,对于LED类负载,由于发管电流很小,因此上拉电阻的阻值可以用20k的,但是对于管子的集电极为继电器负载时,由于集电极电流大,因此上拉电阻的阻值最好不要大于4.7K,有时候甚至用2K的。对于PNP管,毫无疑问PNP管是低电平有效的,因此上拉电阻的阻值用100K以上的就行了,且管子的基极必须串接一个1——10K的电阻,阻值的大小要看管子集电极的负载是什么,对于LED类负载,由于发光电流很小,因此基极串接的电阻的阻值可以用20k的,但是对于管子的集电极为继电器负载时,由于集电极电流大,因此基极电阻的阻值最好不要大于4.7K。
  
对于驱动TTL集成电路,上拉电阻的阻值要用1——10K之间的,有时候电阻太大的话是拉不起来的,因此用的阻值较小。但是对于CMOS集成电路,上拉电阻的阻值就可以用的很大,一般不小于20K,我通常用100K的,实际上对于CMOS电路,上拉电阻的阻值用1M的也是可以的,但是要注意上拉电阻的阻值太大的时候,容易产生干扰,尤其是线路板的线条很长的时候,这种干扰更严重,这种情况下上拉电阻不宜过大,一般要小于100K,有时候甚至小于10K。
  
根据以上分析,上拉电阻的阻值的选取是有很多讲究的,不能乱用。

本文转载自 ofweek
转载地址:http://www.eeworld.com.cn/mcu/article_2017091434420.html
声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有,如涉及侵权,请联系小编进行处理。

围观 6

设计中采用了专门的芯片组成了PWM信号的发生系统并且对PWM信号的原理、产生方法以及如何通过软件编程对PWM信号占空比进行调节从而控制其输入信号波形等均作了详细的阐述。另外本系统中使用了红外对管对直流电机的转速进行测量,经过整形电路后将测量值送到单片机,并且最终作为反馈值输入到单片机进行PID运算从而实现了对直流电机速度的控制。在软件方面,文章中详细介绍了PID运算程序初始化程序等的编写思路和具体的程序实现。

“”

1 单片机最小系统:单片机最小系统由51单片机,晶振电路,复位电路,电源组成。大家都比较熟悉,这里不再赘述。

2 四位数码管显示:在应用系统中,设计要求不同,使用的LED显示器的位数也不同,因此就生产了位数,尺寸,型号不同的LED显示器供选择,在本设计中,选择4位一体的数码型LED显示器,简称“4-LED”。本系统中前三位显示电压的整数位,最后一位显示转速的小数位。4-LED显示器引脚如图2所示,是一个共阴极接法的4位LED数码显示管,其中a,b,c,e,f,g为4位LED各段的公共输出端,1、2、3、4分别是每一位的位数选端,dp是小数点引出端,4位一体LED数码显示管的内部结构是由4个单独的LED组成,每个LED的段输出引脚在内部都并联后,引出到器件的外部。

3 电机驱动电路:电机驱动电中是采用ULN2003来驱动。ULN2003是高耐压、大电流达林顿陈列,由七个硅NPN达林顿管组成。该电路的特点:ULN2003的每一对达林顿都串联一个2.7K的基极电阻,在5V的工作电压下它能与TTL和CMOS电路直接相连,可以直接处理原先需要标准逻辑缓冲器来处理的数据,输入5VTTL电平,输出可达500mA/50V。ULN2003的引脚图,其中IN1~IN7为输入控制端;OUT1~OUT7为输出端;8脚为芯片的接地端;9脚为公共端,该脚是内部7个续流二极管负极的公共端,各二极管的正极分别接各达林顿管的集电极。用于感性负载时,该脚接负载电源正极,实现续流作用。如果该脚接地,实际上就是达林顿管的集电极对地接通。

当P1.0中为高电平时,其内部三极管导通,使电机转动。当P1.0为低电平时,内部三极管截止,电路断开,电机停止转动。所以在程序中可以利用P1.0口输出PWM波来控制电机的转速。

4 红外测速电路:发射管工作时发出红外线,当接收管收到红外信号时,其电阻变小(本设计相当于从无穷大变到1k左右)。利用其电阻变化,改变接收管分压情况。挡片是利用圆盘上剪四个孔,当挡片随电机转动时,接收管两端电平发生变化,产生脉冲。

5 整形电路:本设计的整形电路是用555定时器接成的施密特触发器。

6 源程序:

#include "reg52.h"

#define uchar unsigned char

#define uint unsigned int

uchar code table[10]={0x3f,0x06,0x5b,

0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f}; //共阴数码管显示码(0-9)

sbit xiaoshudian=P0^7;

sbit wei1=P2^4; //数码管位选定义

sbit wei2=P2^5;

sbit wei3=P2^6;

sbit wei4=P2^7;

sbit beep=P2^3; //蜂鸣器控制端

sbit motor = P1^0; //电机控制

sbit s1_jiasu = P1^4; //加速按键

sbit s2_jiansu= P1^5; //减速按键

sbit s3_jiting=P1^6; //停止/开始按键

uint pulse_count; //INT0接收到的脉冲数

uint num=0; //num相当于占空比调节的精度

uchar speed[3]; //四位速度值存储

float bianhuasudu; //当前速度(理论计算值)

float reallyspeed; //实际测得的速度

float vv_min=0.0;vv_max=250.0;

float vi_Ref=60.0; //给定值

float vi_PreError,vi_PreDerror;

uint pwm=100; //相当于占空比标志变量

int sample_time=0; //采样标志

float v_kp=1.2,v_ki=0.6,v_kd=0.2; //比例,积分,微分常数

void delay (uint z)

{

uint x,y;

for(x=z;x>0;x--)

for (y=20;y>0;y--);

}

void time_init()

{

ET1=1; //允许定时器T1中断

ET0=1; //允许定时器T0中断

TMOD = 0x15; //定时器0计数,模式1;定时器1定时,模式1

TH1 = (65536-100)/256; //定时器1值,负责PID中断 ,0.1ms定时

TL1 = (65536-100)%6;

TR0 = 1; //开定时器

TR1 = 1;

IP=0X08; //定时器1为高优级

EA=1; //开总中断

}

void keyscan()

{

float j;

if(s1_jiasu==0) //加速

{

delay(20);

if(s1_jiasu==0)

vi_Ref+=10;

j=vi_Ref;

}

while(s1_jiasu==0);

if(s2_jiansu==0) //减速

{

delay(20);

if(s2_jiansu==0)

vi_Ref-=10;

j=vi_Ref;

}

while(s2_jiansu==0);

if(s3_jiting==0)

{

delay(20);

motor=0;

P1=0X00;

P3=0X00;

P0=0x00;

}

while(s3_jiting==0);

}

float v_PIDCalc(float vi_Ref,float vi_SpeedBack)

{

register float error1,d_error,dd_error;

error1=vi_Ref-vi_SpeedBack; //偏差的计算

d_error=error1-vi_PreError; //误差的偏差

dd_error=d_error-vi_PreDerror; //误差变化率

vi_PreError=error1; //存储当前偏差

vi_PreDerror=d_error;

bianhuasudu=(v_kp*d_error+v_ki*vi_PreError+v_kd*dd_error);

return (bianhuasudu);

}

void v_Display()

{

uint sudu;

sudu=(int)(reallyspeed*10); //乘以10之后强制转化成整型

speed[3]=sudu/1000; //百位

speed[2]=(sudu00)/100; //十位

speed[1]=(sudu0)/10; //个位

speed[0]=sudu; //小数点后一位

wei1=0; //第一位打开

P0=table[speed[3]];

delay(5);

wei1=1; //第一位关闭

wei2=0;

P0=table[speed[2]];

delay(5);

wei2=1;

wei3=0;

P0=table[speed[1]];

xiaoshudian=1;

delay(5);

wei3=1;

wei4=0;

P0=table[speed[0]];

delay(5);

wei4=1;

}

void BEEP()

{

if((reallyspeed)>=vi_Ref+5||(reallyspeed

{

beep=~beep;

delay(4);

}

}

void main()

{

time_init();

motor=0;

while(1)

{

v_Display();

BEEP();

}

if(s3_jiting==0) //对按键3进行扫描,增强急停效果

{

delay(20);

motor=0;

P1=0X00;

P3=0X00;

P0=0x00;

}

while(s3_jiting==0);

}

void timer0() interrupt 1

{

}

void timer1() interrupt 3

{

TH1 = (65536-100)/256; //1ms定时

TL1 = (65536-100)%6;

sample_time++;

if(sample_time==5000) //采样时间0.1ms*5000=0.5s

{

TR0=0; //关闭定时器0

sample_time=0;

pulse_count=TH0*255+TL0; //保存当前脉冲数

keyscan(); //扫描按键

reallyspeed=pulse_count/(4*0.6); //计算速度

pwm=pwm+v_PIDCalc(vi_Ref,reallyspeed);

if(pwm

if(pwm>100)pwm=100;

TH0=TL0=0;

TR0=1; //开启定时器0

}

num++;

if(num==pwm) //此处的num值,就是占空比

{

motor=0;

}

if(num==100) //100相当于占空比调节的精度

{

num=0;

motor=1;

}

}

本文转载自 51单片机学习网
转载地址:http://mp.weixin.qq.com/s/jbaDJZdcv3sxczcJjhGndw
声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有,如涉及侵权,请联系小编进行处理。

围观 15