运算放大器

运算放大器15个常见指标

输入失调电压(Offset Voltage,VOS)

定义:在运放开环使用时, 加载在两个输入端之间的直流电压使得放大器直流输出电压为 0。

优劣范围:1µV 以下,属于极优秀的。100µV 以下的属于较好的。最大的有几十mV。

对策:

运算放大器的串联:如何同时实现高精度和高输出功率

工程师常常面对各种挑战,需要不断开发新应用,以满足广泛的需求。一般来说,这些需求很难同时满足。例如一款高速、高压运算放大器(运放),同时还具有高输出功率,以及同样 出色的直流精度、噪声和失真性能。市面上很少能见到兼具所有这些特性的运算放大器。但是,您可以使用两个单独的放大器来构建这种放大器,形成复合放大器。将两个运算放大器组合在一起,就能将各自的优势特性集成于一体。

运算放大器中“轨到轨”的意义

设计放大电路时,随着信号的幅度的增大,输出信号逐渐增大。但会遇到下面两种情况:

1)当输出信号增大到一定程度时,虽然此时的输出信号幅度还没有达到电源轨,但输出信号已经饱和,如图 1。
2)当供电电压一定时,随着负载阻抗的减小,输出信号出现饱和。

资料下载 | 模拟工程师电路设计指导手册:运算放大器

模拟工程师电路设计指导手册:放大器可提供放大器电路设计理念,便于您快速借鉴这些理念来满足特定系统需求。每种电路都以“示例定义”的形式呈现。里面包括一些像食谱一样的分布式说明,并且带有能帮助您改进电路从而满足您的设计目标的公式。而且,所有电路都通过SPICE仿真的验证。

利用斩波稳定架构零漂移运算放大器优势的切实考虑

零漂移运算放大器

一种特殊形式的运算放大器,适用于精密应用,在这些应用中,输入差分信号非常小,输入引脚上的任何偏移都可能在输出端引起严重误差。

您真的能通过运算放大器实现ppm精度吗?

工业和医疗设计推动产品的精度和速度日益提高。模拟集成电路行业总体能够跟上速度的发展要求,但在精度要求上却有所不足。许多系统都竞相迈入1ppm精度之列,特别是如今,1ppm的线性ADC日益普遍。本文将介绍运算放大器的精度局限性,以及如何选择为数不多的有可能达到1ppm精度的运算放大器。另外,我们还将介绍一些针对现有运算放大器局限性的应用改善。

这种直接测量运算放大器输入差分电容的方法,你知道么?

输入电容可能会成为高阻抗和高频运算放大器(op-amp)应用的一个主要规格。值得注意的是,当光电二极管的结电容较小时,运算放大器的输入电容会成为噪声和带宽问题的主导因素。

运算放大器可以用作比较器?

许多人偶尔会把运算放大器当比较器使用。一般而言,当您只需要一个简单的比较器,并且您在四运算放大器封装中还有一个“多余”的运算放大器时,这种做法是可行的。只是运算放大器需要相位补偿才能运行,因而把运算放大器用作比较器时其速度会非常低,但是如果对速度要求不高,则运算放大器可以满足需求。偶尔会有人问到我们运算放大器的这种使用方法,因为他们发现这种方法有时有效,有时却不如人们预期的那样效果好。

如何轻松稳定带感性开环输出阻抗的运算放大器?

简介

低压变高压,运算放大器自举实现更优性能!

先把问题放出来:能否让低压放大器自举来获得高压缓冲器?

答案当然是可以的!您可以采用具有出色输入特性的运算放大器,并进一步提高其性能,使其电压范围、增益精度、压摆率和失真性能均优于原来的运算放大器。