1.变压器饱和

变压器饱和现象

在高压或低压输入下开机(包含轻载,重载,容性负载),输出短路,动态负载,高温等情况下,通过变压器(和开关管)的电流呈非线性增长,当出现此现象时,电流的峰值无法预知及控制,可能导致电流过应力和因此而产生的开关管过压而损坏.

“”
变压器饱和时的电流波形

容易产生饱和的情况:
-变压器感量太大
-圈数太少
-变压器的饱和电流点比IC的最大限流点小
-没有软启动

解决办法:
-降低IC的限流点
-加强软启动,使通过变压器的电流包络更缓慢上升

“”

2.Vds过高

Vds的应力要求

最恶劣条件(最高输入电压,负载最大,环境温度最高,电源启动或短路测试)下,Vds的最大值不应超过额定规格的90%

Vds降低的办法

-减小平台电压:
-减小变压器原副边圈数比
-减小尖峰电压:

a.减小漏感,变压器漏感在开关管开通是存储能量是产生这个尖峰电压的主要原因,减小漏感可以减小尖峰电压

b.调整吸收电路:

•使用TVS管
•使用较慢速的二极管,其本身可以吸收一定的能量(尖峰)
•插入阻尼电阻可以使得波形更加平滑,利于减小EMI

3.IC 温度过高

IC温度过高的原因及解决办法

-内部的MOSFET损耗太大
开关损耗太大,变压器的寄生电容太大,造成MOSFET的开通、关断电流与Vds的交叉面积大。
解决办法是,增加变压器绕组的距离,以减小层间电容,如同绕组分多层绕制时,层间加入一层绝缘胶带(层间绝缘) 。

-散热不良
IC的很大一部分热量依靠引脚导到PCB及其上的铜箔,应尽量增加铜箔的面积并上更多的焊锡

-IC周围空气温度太高
IC应处于空气流动畅顺的地方,应远离零件温度太高的零件。

4.空载、轻载不能启动

现象:
空载、轻载不能启动,Vcc反复从启动电压和关断电压来回跳动。

原因及解决办法:
空载、轻载时,Vcc绕组的感应电压太低,而进入反复重启动状态。

解决办法:
增加Vcc绕组圈数,减小Vcc限流电阻,适当加上假负载。
如果增加Vcc绕组圈数,减小Vcc限流电阻后,重载时Vcc变得太高,请参照稳定Vcc的办法。

5.启动后不能加重载

可能的原因及解决办法:

1.Vcc在重载时过高
重载时,Vcc绕组感应电压较高,使Vcc过高并达到IC的OVP点时,将触发IC的过压保护,引起无输出。
如果电压进一步升高,超过IC的承受能力,IC将会损坏。

2.内部限流被触发

-限流点太低
重载、容性负载时,如果限流点太低,流过MOSFET的电流被限制而不足,使得输出不足。解决办法是增大限流脚电阻,提高限流点。

-电流上升斜率太大
上升斜率太大,电流的峰值会更大,容易触发内部限流保护。解决办法是在不使变压器饱和的前提下提高感量

6.待机输入功率大

可能的原因及解决办法:

-Vcc在空载、轻载时不足

这种情况会造成空载、轻载时输入功率过高,输出纹波过大。
输入功率过高的原因是,Vcc不足时,IC进入反复启动状态,频繁的需要高压给Vcc电容充电,造成起动电路损耗。如果启动脚与高压间串有电阻,此时电阻上功耗将较大,所以启动电阻的功率等级要足够。

-电源IC 未进入Burst Mode 或已经进入Burst Mode,但Burst 频率太高

开关次数太多,开关损耗过大。
调节反馈参数,使得反馈速度降低。

7.短路功率过大

现象:
输出短路时,输入功率太大,Vds过高

原因:
输出短路时,重复脉冲多,同时开关管电流峰值很大,造成输入功率太大过大的开关管电流在漏感上存储过大的能量,开关管关断时引起Vds高

输出短路时有两种可能引起开关管停止工作

-触发OCP这种方式可以使开关动作立即停止。
•触发反馈脚的OCP
•开关动作停止
•Vcc下降到IC关闭电压
•Vcc重新上升到IC启动电压,而重新启动

-触发内部限流
这种方式发生时,限制可占空比,依靠Vcc下降到UVLO下限而停止开关动作,而Vcc下降的时间较长,即开关动作维持较长时间,输入功率将较大。
•触发内部限流,占空比受限
•Vcc下降到IC关闭电压
•开关动作停止
•Vcc重新上升到IC启动电压,而重新启动

解决办法:

-减少电流脉冲数,使输出短路时触发反馈脚的OCP,可以使开关动作迅速停止工作,电流脉冲数将变少。这意味着短路发生时,反馈脚的电压应该更快的上升。所以反馈脚的电容不可太大。
-减小峰值电流,

8.空载.轻载输出纹波过大

可能的原因及解决办法:

-Vcc在空载或轻载时不足
Vcc不足时,它表现为: 在启动电压(如12V)和关断电压(如8V)之间振荡
IC在周期较长的间歇工作,短时间提供能量到输出,接着停止工作较长的时间,使得电容存储的能量不足以维持输出稳定,输出电压将会下降。

解决方法:
保证任何负载条件下,Vcc能够稳定供给。

-Burst Mode时,间歇工作的频率太低
此频率太低,输出电容的能量不能维持稳定。

解决办法:
在满足待机功耗要求的条件下稍微提高间歇工作的频率
增大输出电容

9.重载、容性负载不能启动

现象:
轻载能够启动,启动后也能够加重载,但是重载或大容性负载情况下不能启动。

一般设计要求:
无论重载还是容性负载(如10000uF),输入电压最低还是最低,20mS内,输出电压必须上升到稳定值。

原因及解决办法(保证Vcc在正常工作范围内的前提下):

下面以容性负载C=10000uF为例进行分析,
按规格要求,必须有足够的能量使输出在20mS内上升到稳定的输出电压(如5V)。
E=0.5*C*V^2
电容C越大,需要在20mS内从输入传输到输出的能量更大。

“”

以芯片FSQ0170RNA为例如图所示,阴影部分总面积S就是所需的能量。要增加面积S,办法是:

1.增大峰值电流限流点I_limit,可允许流过更大电感电流Id

将与Pin4相接的电阻增大,从内部电流源Ifb分流更小,使作为电流限制参考电压的PWM比较器正输入端的电压将上升,即允许更大的电流通过MOSFET/变压器,可以提供更大的能量。

2.启动时,增加传递能量的时间,即延长Vfb的上升时间(到达OCP保护点前)。

“”

对这款FSQ0170RNA芯片,电感电流控制是以Vfb为参考电压的,Vfb电压的波形与电感电流的包络成正比。控制Vfb的上升时间即可控制电感包络的上升时间,即增加传递能量的时间。

IC的OCP功能是检测Vfb达到Vsd(如6V)实现的。所以要降低Vfb斜率,就可以延长Vfb的上升时间。

输出电压未达到正常值时,如果反馈脚电压Vfb已经上升到保护点,传递能量时间不够。重载、容性负载启动时,输出电压建立较慢,加到光耦电压较低,通过光耦二极管的电流小,光耦光敏管高阻态(趋向关断)的时间较长。IC内部电流源给与反馈脚相接的电容充电较快,如果Vfb在这段时间内上升到保护点(如6V),MOSFET将关断。输出不能达到正常值,启动失败。

解决办法:使输出电压达到正常值时,反馈脚电压Vfb仍然小于保护点。使Vfb远离保护点而缓慢上升,或延长反馈脚Vfb上升到保护点的时间,即降低Vfb的上升斜率,使输出有足够的时间上升到正常值。

A.增大反馈电容(C9),可以将Vfb的上升斜率降低,如图所示,由D线变成A线。但是反馈电容太大会影响正常工作状态,降低反馈速度,使输出纹波变大。所以此电容不能变化太大。

B.由于A方法有不足,将一个电容(C7)串连稳压管(D6,3.3V)并联到反馈脚。此法不会影响正常工作,如B线所示,当Vfb<3.3V时,稳压管不会导通,分流。上升3.3V时,稳压管进入稳压状态,电容C7开始充电分流,减小后续Vfb的上升斜率。C。在431的K-A端并联一个电容(C11),电源启动时,C11电压较低,并由光耦二极管和431的偏置电阻R10进行充电。这样光耦就有较大电流通过,使光耦光敏管阻抗较低而分流,Vfb将缓慢上升,如C线所示。R10×C11影响充电时间,也就影响输出的上升时间。

注意点:

1.增加反馈脚电容(包括稳压管串电容),对解决超大容性负载问题作用较小。
2.增大峰值电流限流点I_limit,同时也增加了稳态下的OCP点。需要在容性负载,输入最低情况下检查变压器是否会饱和。
3.如果要保持限流点,须使R10×C11更大,但在超大容性负载(10000uF)情况下,可能会增加5Vsb的上升时间超过20mS。
此法需要检查动态响应是否受太大影响。
4.431的偏置电阻R10太小,431并联的C11要更大。
5.为了保证上升时间,增大OCP点和增大R10×C11方法可能要同时使用。

10.空载、轻载输出反跳

现象:
在输出空载或轻载时,关闭输入电压,输出(如5V)可能会出现如下图所示的电压反跳的波形。

“”

原因:
输入关掉时,5V输出将会下降,Vcc也跟着下降,IC停止工作,但是空载或轻载时,巨大的PC电源大电容电压并不能快速下降,仍然能够给高压启动脚提供较大的电流使得IC重新启动,5V又重新输出,反跳。

解决方法:
•在启动脚串入较大的限流电阻,使得大电容电压下降到仍然比较高的时候也不足以提供足够的启动电流给IC。
•将启动接到整流桥前,启动不受大电容电压影响。输入电压关断时,启动脚电压能够迅速下降。

本文转载自电源研发精英圈
转载地址:http://mp.weixin.qq.com/s/0lMweu4aI_4WT-oFNs5paw
声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有,如涉及侵权,请联系小编进行处理。

围观 9

由于实际要传输的信号(基带信号)所占据的频带通常是低频开始的,而实际通信信道往往都是带通的,要在这种情况下进行通信,就必须对包含信息的信号进行调制,实现基带信号频谱的搬移,以适合实际信道的传输。即用基带信号对载波信号的某些参量进行控制,使载波的这些参量随基带信号的变化而变化。因为正弦信号的特殊优点(如:形式简单,便于产生和接受等),在大多数数字通信系统中,我们都选用正弦信号作为载波。显然,我们可以利用正弦信号的幅度,频率,相位来携带原始数字基带信号,相对应的分别称为调幅,调频,调相三种基本形式。当然,我们也可以利用其中二种方式的结合来实现数字信号的传输,如调幅-调相等,从而达到某些更加好的特性。

一.星座图基本原理

一般而言,一个已调信号可以表示为:

“1”

上式中,g(t)是低通脉冲波形,此处,我们为简单处理,假设g(t)=1,0

“2”

才能实现N0这个信号的传输。当然,我们也不可能同时使用载波信号的幅度、频率和相位三者来同时携带调制信号,这样的话,接收端的解调过程将是非常复杂的。其中最简单的三种方式是:

“3”

我们也可以采取两者的结合来传输调制信号,一般采用的是幅度和相位结合的方式,其中使用较为广泛的一项技术是正交幅度调制(MQAM)。

我们把(1)式展开,可得:

“4”

根据空间理论,我们可以选择以下的一组基向量:

“5”

来表示。当在二维坐标上将上面的向量端点画出来时,我们称之为星座图,又叫矢量图。也就是说,星座图不是本来就有的,只是我们这样表示出来的。星座图对于判断调制方式的误码率等有很直观的效用。

由此我们也可以看出,由于频率调制时,其频率分量始终随着基带信号的变化而变化,故而其基向量也是不停地变化,而且,此时在信号空间中的分量也为一个确定的量。所以,对于频率调制,我们一般都不讨论其星座图的。

二.星座图的几个例子

下面我们就除频率调制之外的其他几种调制方式分别说明。

1.MASK 调制

MASK调制是多进制幅度调制,故其载波频率fc和相位φ(一般取φ=0)为一常数,于是,其已调信号可以写成:

“6”

2d是两相邻信号幅度之间的差值,此时,每个已调信号的波形可携带log2M比特的信息。

“7”

“8”

在Matlab中自带了画星座图的函数,上面的图调用了modmap('ask',8)。

2.MPSK 调制

MPSK 是多进制相位调制,是利用载波的多种不同相位来表征数字信息的调制方式。分为绝对相位调制和相对相位调制,此处,我们仅对绝对相位调制进行讨论。对于一个M相相位调制,其已调信号可以表示为:

“9”

“10”

“11”

3.正交幅度调制(MQAM)

一个MQAM信号可以看成是在两个正交载波上进行幅度调制的叠加:

“12”

其中g(t)是低通脉冲波形,此处我们仍然假设为矩形波。fc是载波频率,Amc,Ams是一组幅值,m=0,1...M-1,这样可以将不同的信号序列映射到不同的幅值电平上。

选择基向量:

“13”

“14”

则MQAM信号在空间中可以表示为:

“15”

三.星座图的作用

下面简要说明一下星座图在实际情况中的应用。前面已经说了,星座图对于判断调制方式的误码率等有很直观的效用。下面我们利用Matlab对于QPSK(M=4)调制举一个例子来说明:分别选取信噪比为0dB, 10dB, 20dB,在接收端观察接收到的信号向量。

程序:

“”

“16”

分析:

如图四所示,其中黑点是没有加入噪声时的实际情况噪声条件下的信号映射到空间中的矢量图,而加号(+)是在信道传输中。由此我们可以看出此时系统近似的误码率。

(a)是信噪比是0dB时的情况,由于此时的噪声很大(其能量和要传输的信号一样大),在星座图上可以看出,信号受噪声影响很大,与理想情况下的矢量点偏离较远,误码率也就很高。

(b)是信噪比是10dB时的情况,此时的噪声的能量是要传输信号能量的十分之一。我们可以看出,在信号空间中实际信号的分布比较集中了,误码率明显降低。

(c)信噪比是20dB时的情况,此时的噪声的能量是要传输信号能量的百分之一。我们可以看出,在信号空间中实际信号的分布非常集中了,此时的误码率已经是非常低了。

本文转载自EETOP

围观 9