电阻

AEC-Q200车用额定功率电阻

绕线电阻额定功率通常为持续功率,不足以支持电动汽车应用。典型应用是大电容预充电和放电,通常称为“软启动”。这种情况下,电阻的脉冲处理能力也非常重要。结合理论基础与热性能有限元模拟,可以确定较长脉冲持续时间内的这种能力。所得具体结果便于快速评估不断变化的客户需求,提供合适的电阻。

电流检测放大器并联电阻连接第三部分:并联电阻正确连接对比错误连接

本文是关于并联电阻连接三篇文章的最后一篇,我们在第一篇讲解了诊断误差,在第二篇谈到建立精确的连接。

今天,我们将看看一个PCB设计中的并联电阻连接,并比较正确与错误连接的PCB之间的测量精度数据。

当进行并联连接时,遵循连接到并联电阻的建议。连接线长度尺寸应相同并尽可能短。确保电流检测放大器和并联电阻位于PCB的同一边。为了达到最高的精度,使用四端并联,也称为开尔文并联。

在下面的图1中,绿框圈出了从并联电阻到输入引脚的检测线。连到电阻器焊盘的线长度尺寸相同,并止于焊盘内部的中心。

“图1:NCS21xR客户评估PCB布板提供优化的并联电阻连接”
图1:NCS21xR客户评估PCB布板提供优化的并联电阻连接

图2显示了用于分流测量实验的两个客户评估板。左边标有“Good”的电路板有个1mΩ并联电阻,焊接在电阻焊盘(R1)上,并根据制造商关于如何连接一个双端子并联电阻的典型建议,对检测线连接进行了优化。

电流检测放大器并联第二部分:实现精确的分流电阻连接

本系列博客分为三部分,第一部分谈了“诊断分流电阻连接误差”,本文是第二部分,以实现精确的分流电阻连接为主题。我们今天将谈谈分流电阻设计架构和分流电阻厂商关于连接到其分流电阻的典型建议准则。有很多连接方式是错误的,唯有遵循分流电阻厂商的建议准则才不会出错。

在下面的图1中,看看左边标有“理想(Ideal)”的分流电阻连接。理想的连接使用长度和尺寸都一致和相同的走线;这些走线连接到分流器制造商通常建议的分流处,最后由放大器测量或检测的电压正好对应于分流的有源部分的压降。现在,花点时间比较图中所示的理想连接与“非理想(non-ideal)”连接。

“图1:理想的
图1:理想的 vs 非理想的分流电阻连接

分流电阻设计

为什么三极管的基级要加一个电阻?

设计三极管电路时,经常要在基极上设计两个电阻,一个在控制信号和基极之间,另一个把基极上拉到电源或者下拉到地。下面以三极管开关电路为例,介绍这两个电阻的作用。首先介绍NPN三极管中电阻的作用。

1、基极限流电阻

这个限流电阻接在控制信号与基极之间,防止基极电流过大把三极管烧坏,该电阻起到限流的作用,所以叫做基极限流电阻。基极和发射极之间的压降一般为0.7V,流过基极的电流可通过如下的计算公式得到:

IB=(Vin-0.7)/R176中R176为基极电阻,如果不接该电阻的话电流过大会把三极管烧坏。

“”

2、基极下拉电阻

有时候还会在基极设计一个下拉电阻,如果基极端是通过单片机控制的,在单片机初始化时可能输出电平不确定,在这种情况下把基极下拉到确定的低电平,防止出现误动作。

关于模拟电路,你了解多少?(三)

并联电路

多个电路元件的两端分别连接于两个节点,这种连接方式称为并联。并联电路电源输出的电流等于通过每个元件的电流的代数之和,输出的电压等于每个元件两端的电压。

“”

串联分压,并联分流。

电阻并联

如下图所示,n个电阻器并联在一起,然后将电源连接到该并联电路的两端。

“”

根据欧姆定律,第k个电阻器两端的电压vk等于通过的电流ik乘以其电阻Rk,即vk=ikRk

关于模拟电路,你了解多少?(二)

电感

电感是通过电流改变产生电动势,从而抵抗电流改变的一种特性,其基本单位是亨利H,可由线圈的直径、长度、横截面积、线圈数等计算元件的电感量。

电感器是将电能转化为磁能存储起来的元件,具有一定的电感,一般由骨架、绕组线圈、屏蔽罩、封装材料、磁心或铁心等组成。

电感元件依据外观和功能的不同会有不同称呼,例如:

线圈:漆包线绕制为多圈状,作为电磁铁和变压器中使用的电感。
扼流圈:对高频提供较大电阻,通过直流或低频的电流,因而称为扼流圈。
绕组:配合铁磁性材料,安装在变压器、电动机、发电机中使用的较大电感。
磁珠:导线穿越磁性物质,而无线圈状,常充当高频滤波作用的小电感,依据外观称为磁珠。

电感的计算方式与电阻类似,串联时逐个相加,并联时总电感的倒数等于各个电感的倒数之和。

“”

串联电路

电流检测放大器并联第一部分:诊断并联电阻连接误差

Amiri McCain

本系列博客分为三部分,我们将谈谈用安森美半导体的电流检测放大器(CSA)(如NCS21xR系列和NCS199AxR系列)如何实现精确的并联电阻连接以获得最佳性能。本文是第一部分。

在这首篇博客中,我们将专门谈谈如何诊断并联电阻连接误差。这是迄今客户在使用电流检测放大器时最常见的问题,所以今天我们将弄清楚如何快速、准确地调试这些测量误差。

要记住的一个重要因素是,电流检测放大器实际上是在检测其差分输入端的电压电位,并且精确地放大了电压,而不是电流;因此,电流是间接测量的。利用测量的输出电压、放大器增益、参考电压和并联电阻的值,可以计算出流过并联电阻器的电流:

“”

以下几点及下面的决策树图(Decision Tree Figure)和调试表(Debug Table)可用于诊断任何电流检测放大器电路的分流测量误差。

● 电流检测放大器是电压放大器

高速电路设计必看之干货——数据线上串联电阻作用详解

无论是早期的收音机、电视机到计算机、移动通讯终端,还是目前的移动智能终端的4G/5G技术研究、人工智能、云计算、AR/VR等技术,这些技术发展无疑都对MCU、基带、FPGA等组成的这些高速电路的计算量要求越来越大,也越来越快。这些都推动着高速电路的蓬勃发展。随着电路数据速度的暴增,高速电路的学习、应用、研究也越来越难,门槛也越来越高。作为高速电路应用设计发展的工程师们必然要学习很多,同样也会遇到不少问题。

正如很多硬件工程师在看高速电路时,都会经常看到串一些小电阻,如22欧姆,但是也不是一定串。同样场合有的串,有的不串。这是为什么呢?

“芯片脚串联了很多电阻”
芯片脚串联了很多电阻

这个电阻有两个作用

第一是阻抗匹配。因为信号源的阻抗很低,跟信号线之间阻抗不匹配,串上一个电阻后,可改善匹配情况,以减少反射,避免振荡等。

并联电阻的分流电感很重要!很重要!很重要!

作者: Jerry Steele

在高频开关系统中,通过并联电阻测量电流时,您可能会观察到正弦波电流纹波幅值过大、方波纹波或快速转换电流过冲或过高的高频噪声等问题。这些问题是由并联的分流电感引起的,当并联电阻值较低时,尤其是在1mΩ以下时,分流电感就变得更为明显。

电阻在高速电路中的应用与分析

在一块PCBA中,我们所看到的器件最多的一定是电阻。如果说芯片是电路的大脑,那么电阻便是连接各肢体的神经元。在高速电路设计中电阻的应用主要有六点。

1、限流作用

在高速电路中同时存在很多TTL芯片、MOSFET芯片、IGBT芯片、那么芯片之间驱动兼容便尤为重要。当MOSFET电平驱动TTL芯片时,便需要加限流电阻。而相反则需要增加电源以增加驱动电流(设计到电平转换电路)。

“各种不同IC之间的接口驱动要求”
各种不同IC之间的接口驱动要求

2、电阻精度

2.1、在高速电路中我们所需要的的采样电路、分压电路、反馈电路等由电阻组成时,我们需选用1%精度的电阻。

2.2、由于芯片的AD口都会存在上拉或者下拉电阻,此时情更需注意电阻值的选择,使得测得的芯片AD口测得的电压误差小(涉及到MCU的AD口电阻匹配问题)