作者: Jerry Steele

在高频开关系统中,通过并联电阻测量电流时,您可能会观察到正弦波电流纹波幅值过大、方波纹波或快速转换电流过冲或过高的高频噪声等问题。这些问题是由并联的分流电感引起的,当并联电阻值较低时,尤其是在1mΩ以下时,分流电感就变得更为明显。

“”

【图1. 这是分流电感问题的等效电路图。100kHz开关稳压器的方波输出被L1和C1滤波,使得电流纹波是正弦波。H1捕获实际电流波形(由ROUT 1探测),E1捕获并联电阻的精确电压及其电感(由Rout探测),就像电流检测放大器(20V电源有助于方便地偏置和缩放以同时查看输出波形)。】

您可能遇到的一个问题涉及不正确的正弦波波纹信号幅度和波形。这里建模的一个实例中,波纹信号太大,使人怀疑整个测量的准确性。随附提供给我们的电路图显示了一个神秘的三角波,绘制于电路图上分流电阻附近(没有说明),起初我没有注意,直到我仿真了电路。

“”

【图2. 绿色的曲线代表实际的纹波电流,而黄色的曲线代表分流电阻的压降,这是从电流检测放大器输出的信号,没有输入滤波器。请注意,三角形的幅值比正弦波大得多(源E和H被缩放,当一切正常时,它们将匹配)。】

“”

【图3. 这绘制了我们在应用中看到的问题。由于应用有一个输入滤波器,所以放大器输出的波形是正弦的,但幅值过大。只是滤波电容器太小的问题。】

“”

【图4. 此应用电路图显示了滤波器在RFILT和CFILT处的初始值不正确,产生了图3的波形。将CFILT修正为0.3µF将提供正确的波形和幅值,如图5所示。】

“”

【图5. 纹波以正确的滤波值响应。波形互相重叠。】

确实,正弦波纹波在并联电阻有足够的分流电感时确实会变成三角形波形。放大器最初有一个正弦波输出,因为设计人员明智地在放大器输入处包含了一个低通滤波器,但它根本没有被正确地“调谐”。在这种情况下,调谐涉及调整电容值,直到纹波匹配正确的计算值。现实世界分流的问题是,由于电感规格的模糊性,它们不遵守规则的分析方法。您可能会在数据表前看到类似于“0.5到5nH”的标注,而在规格表上没有具体的值,就看您是否幸运了。那么您使用一个电流探头,通过迭代您的电容器来确定正确的值(很明显,如果幅值太大,您就增加电容值和Vice,反之亦然)。

事实上,如果您有一个真正的方波电流,您可能有幸有一个过冲,您会以同样的方式“调出”。一旦您找到正确的滤波值,它将用于生产,甚至如果您不得不更换并联电阻供应商,它可能仍然有效。构建低于1mΩ的分流系统的方法不多。我可曾提到过,由于分流电感的影响,这个瞬态响应问题会随着分流系统变小(通常是在小于1 mΩ的情况下)而变得更糟?

在输入前滤波的重要性

重要的是,这种滤波应在电流检测IC输入之前完成。对没有前端滤波的系统长期收集的数据显示,在电流和功率值的数据图中,不明原因地偶然(但频率足够出问题)出现了大的尖峰。这些尖峰是引起电流检测前端混叠的并联电阻上升的高频响应引起的,不管是斩波稳定放大器、三角-西格玛转换器还是平均SAR,如果它们是采样系统,所有这些系统都是脆弱的。与任何混叠问题一样,正确的解决方案是在电流检测IC输入前进行模拟滤波。不理会说您不需要滤波器的供应商。如果它是个采样系统,并且您正在收集数据,您需要一个干净的信号进入您的电流检测IC。还请记住,混叠不是唯一的潜在问题,未经滤波的输入只会导致这些高频输入使前端过载的风险。

最后,如果您想更多的抑制噪音,当然可以调到更低的频率。在输入到链路中的第一个放大器之前进行滤波总是有益的。大多数电流检测IC限制在输入处实际滤波到一个单极,但应始终使用,并视乎需求在放大器的输出处实施更高阶的滤波。

虽然本文讨论这个问题存在于瞬态域,但任何精明的观察者都会意识到它可看作是个简单的一阶带宽问题。在极低欧姆值的并联电阻上的分流电感产生数百千赫拐角频率,有时出奇地低。无论如何处理,作为带宽问题、时间常数问题或瞬态响应问题,最佳滤波器的时间常数将等于并联电阻及其电感的时间常数(或补偿并联零频率的极点频率):

“”

电流检测IC将始终使用差分滤波器,RFILT将是两个电阻之和。从数学的角度,最难的部分是得到一个实际的LSHUNT值。

“”

【图6. 最后,频率响应图显示500 µΩ并联电阻有3 nH电感,频率响应不断上升,用绿色表示,以及输入滤波器与一对10Ω电阻和0.3µF电容的互补响应。请注意,这个分流显示拐角频率约为30千赫。】

本文转载自:安森美半导体
声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有,如涉及侵权,请联系小编邮箱:cathy@eetrend.com 进行处理。

点击这里,获取更多关于应用和技术的有关信息
点击这里,获取更多工程师博客的有关信息

围观 15

电阻在高速电路中的应用与分析

cathy的头像

在一块PCBA中,我们所看到的器件最多的一定是电阻。如果说芯片是电路的大脑,那么电阻便是连接各肢体的神经元。在高速电路设计中电阻的应用主要有六点。

1、限流作用

在高速电路中同时存在很多TTL芯片、MOSFET芯片、IGBT芯片、那么芯片之间驱动兼容便尤为重要。当MOSFET电平驱动TTL芯片时,便需要加限流电阻。而相反则需要增加电源以增加驱动电流(设计到电平转换电路)。

“各种不同IC之间的接口驱动要求”
各种不同IC之间的接口驱动要求

2、电阻精度

2.1、在高速电路中我们所需要的的采样电路、分压电路、反馈电路等由电阻组成时,我们需选用1%精度的电阻。

2.2、由于芯片的AD口都会存在上拉或者下拉电阻,此时情更需注意电阻值的选择,使得测得的芯片AD口测得的电压误差小(涉及到MCU的AD口电阻匹配问题)

Thomas Brand Analog Devices 公司

在各种应用领域,采用模拟技术时都需要使用差分放大器电路,如图 1 所示。例如测量技术,根据其应用的不同,可能需要极高的测量精度。为了达到这一精度,尽可能减少典型误差源(例如失调和增益误差,以及噪声、容差和漂移)至关重要。为此,需要使用高精度运算放大器。放大器电路的外部元件选择也同等重要,尤其是电阻,它们应该具有匹配的比值,而不能任意选择。

“图
图 1. 传统的差分放大器电路。

理想情况下,差分放大器电路中的电阻应仔细选择,其比值应相同 (R2/R1 = R4/R3)。这些比值有任何偏差都将导致不良的共模误差。差分放大器抑制这种共模误差的能力以共模抑制比(CMRR) 来表示。它表示输出电压如何随相同的输入电压(共模电压)而变化。在最佳情况下,输出电压不应该改变,因为它只取决于两个输入电压之间的差值(最大 CMRR);但是,实际使用中情况会有所不同。CMRR 是差分放大器电路的重要特性,通常以 dB 来表示。

对于图 1 所示的差分放大器电路,CMRR 取决于放大器本身以及外部连接的电阻。对于后者,取决于电阻的 CMRR 在本文下述部分以下标"R"表示,并利用下式计算:

“”

例如,在放大器电路中,所需增益 G = 1 且使用容差为 1%、匹配精度为 2% 的电阻产生的共模抑制比为

“”

or in dB

“”

在 34 dB时,CMRRR 相对较低。在这种情况下,即使放大器具有非常好的 CMRR,也无法实现高精度,因为链路的精度总是取决于其精度最差的环节。因此,对于精密的测量电路而言,必须非常精确地选择电阻。

实际使用中传统电阻的阻值并不恒定。它们会受机械负载和温度的影响。根据需求的不同,可以使用具有不同容差的电阻或匹配电阻对(或网络),其大部分使用薄膜技术制造并具有精确的比值稳定性。利用这些匹配的电阻网络(如LT5400 四通道匹配电阻网络),可以大幅提高放大器电路的整体 CMRR。LT5400 电阻网络在整个温度范围内具有出色的匹配性,结合差分放大器电路使用则匹配性更佳,因而可确保 CMRR 比分立电阻提高两倍。

“图
图 2. 带有 LT5400 的差分放大器电路。

LT5400 提供 0.005% 的匹配精度,从而使 CMRRR 达到 86 dB。

然而,放大器电路的总共模抑制比 (CMRRTotal) 由电阻 CMRR 和运算放大器共模抑制比 CMRROP 的组合构成。对于差分放大器,可利用公式 3 计算:

“”

例如, LT1468提供的 CMRROP 典型值为 112 dB,采用 LT5400 的增益为 G = 1,其 CMRRTotal 的值为 85.6 dB。

或者,可以使用集成式差分放大器,如LTC6363。这种放大器在单芯片中内置放大器和最佳匹配电阻。它几乎消除了上述所有问题,同样也可提供最大精度,其 CMRR 值达 90 dB 以上。

结论

必须根据差分放大器电路的精度要求仔细选择外部电阻电路,以便实现系统的高性能。

或者,可以使用集成式差分放大器,如在单芯片中集成了匹配电阻的 LTC6363。

作者

“Thomas
Thomas Brand

Thomas Brand于2015年10月加入德国慕尼黑的ADI公司,当时他还在攻读硕士。2016年5月至2017年1月,他参加了ADI公司的现场应用工程师培训生项目。之后在2017年2月,他开始担任现场应用工程师职位,主要负责工业大客户。此外,他还专注于研究工业以太网,并为中欧的相关主题提供支持。他毕业于德国莫斯巴赫的联合教育大学电气工程专业,之后在德国康斯坦茨应用科学大学获得国际销售硕士学位。

本文转载自:亚德诺半导体
声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有,如涉及侵权,请联系小编邮箱:cathy@eetrend.com 进行处理。

点击这里,获取更多关于应用和技术的有关信息
点击这里,获取更多工程师博客的有关信息

围观 18

电阻这么常见,但是它有哪些作用,你知道吗?

cathy的头像

作者:刘小舒

电阻是电路中最常见的元器件,各种各样的板子上总是少不了电阻的身影,不管是贴片电阻、直插电阻,还是功率电阻。电阻在电路中到底起到哪些作用?越是常用的东西,越是难以说清楚,本文试着和大家讨论一下电阻的作用。

“直插电阻”
直插电阻

电阻的分压作用

欧姆定律大家都清楚,U=IR,当电流流过电阻时,会在电阻两端产生电压降,在这里电阻起到了分压作用。利用电阻的分压可以实现哪些功能呢?比如说单片机在采样时,将电阻两端的电压和实际的物理量建立对应关系,通过计算电压值即可获取物理量的变化,在这里以NTC温度检测作为例子讲解,原理图如下所示:

1、阻抗匹配

阻抗匹配是指信号源或者传输线跟负载之间的一种合适的搭配方式。根据接入方式阻抗匹配有串行和并行两种方式;根据信号源频率阻抗匹配可分为低频和高频两种。

(1)高频信号一般使用串行阻抗匹配。串行电阻的阻值为20~75Ω,阻值大小与信号频率成正比,与PCB走线宽度和长度成反比。在嵌入式系统中,一般频率大于 20M的信号PCB走线长度大于5cm时都要加串行匹配电阻,例如系统中的时钟信号、数据和地址总线信号等。串行匹配电阻的作用有两个:

◆ 减少高频噪声以及边沿过冲。如果一个信号的边沿非常陡峭,则含有大量的高频成分,将会辐射干扰,另外,也容易产生过冲。串联电阻与信号线的分布电容以及负载输入电容等形成一个RC电路,这样就会降低信号边沿的陡峭程度。

◆ 减少高频反射以及自激振荡。当信号的频率很高时,则信号的波长就很短,当波长短得跟传输线长度可以比拟时,反射信号叠加在原信号上将会改变原信号的形状。如果传输线的特征阻抗跟负载阻抗不相等(即不匹配)时,在负载端就会产生反射,造成自激振荡。PCB板内走线的低频信号直接连通即可,一般不需要加串行匹配电阻。

(2)并行阻抗匹配又叫“终端阻抗匹配”,一般用在输入/输出接口端,主要指与传输电缆的阻抗匹配。例如,LVDS与RS422/485 使用5类双绞线的输入端匹配电阻为100~120Ω;视频信号使用同轴电缆的匹配电阻为75Ω或50Ω、使用篇平电缆为300Ω。并行匹配电阻的阻值与传输电缆的介质有关,与长度无关,其主要作用也是防止信号反射、减少自激振荡。值得一提的是,阻抗匹配可以提高系统的EMI性能。此外,解决阻抗匹配除了使用串/并联电阻外,还可使用变压器来做阻抗变换,典型的例子如以太网接口、CAN总线等。

2、0欧电阻的作用

(1)最简单的是做跳线用,如果某段线路不用,直接不焊接该电阻即可(不影响外观)。

(2)在匹配电路参数不确定的时候,以0欧姆代替,实际调试的时候,确定参数,再以具体数值的元件代替。

(3)想测某部分电路的工作电流时,可以去掉0欧电阻,接上电流表,这样方便测量电流。

(4)在布线时,如果实在布不过去了,也可以加一个0欧的电阻 起跨接作用。

(5)在高频信号网络中,充当电感或电容(起阻抗匹配作用,0欧电阻也有阻抗!)。充当电感用时,主要是解决EMC问题。

(6)单点接地,例如模拟地与数字地的单点对接共地。

(7)配置电路,可以取代跳线和拨码开关。有时用户会乱动设置,易引起误会,为了减少维护费用,应用0欧电阻代替跳线等焊在板子上。

(8)系统调试用,例如将系统分成几个模块,模块间的电源与地用0欧电阻分开,调试阶段发现电源或地短路时,去掉0欧电阻可缩小查找范围。

上述功能也可使用“磁珠”替代。0欧电阻与磁珠虽然功能上有点类似,但存在本质差别,前者呈阻抗特性,后者呈感抗特性。磁珠一般用在电源与地网络中,有滤波作用。

本文转载自:电子工程网论坛
声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有,如涉及侵权,请联系小编邮箱:cathy@eetrend.com 进行处理。

点击这里,获取更多关于应用和技术的有关信息
点击这里,获取更多工程师博客的有关信息

围观 11

电阻在高速电路中的应用与分析

cathy的头像

在一块PCBA中,我们所看到的器件最多的一定是电阻。如果说芯片是电路的大脑,那么电阻便是连接各肢体的神经元。在高速电路设计中电阻的应用主要有六点。

1、限流作用

在高速电路中同时存在很多TTL芯片、MOSFET芯片、IGBT芯片、那么芯片之间驱动兼容便尤为重要。当MOSFET电平驱动TTL芯片时,便需要加限流电阻。而相反则需要增加电源以增加驱动电流(设计到电平转换电路)。

“”

各种不同IC之间的接口驱动要求

2、电阻精度

2.1、在高速电路中我们所需要的的采样电路、分压电路、反馈电路等由电阻组成时,我们需选用1%精度的电阻。

2.2、由于芯片的AD口都会存在上拉或者下拉电阻,此时情更需注意电阻值的选择,使得测得的芯片AD口测得的电压误差小(涉及到MCU的AD口电阻匹配问题)

3、阻抗匹配

作者:Mike Parks

学习电子知识就像是剥洋葱,无论你学习了多少,总会有更深层次的知识有待发现和探索。这不仅是因为新技术不断被发明,还因为很多组件变得越来越成熟,以至于我们会把它们当成是理所当然。从这个角度看电阻和电容就是完美的例子,在我大学期间的前几年,电阻和电容对我来说只是电路原理图上一些示意符号。直到我来到实验室,才看到它们是由金属、塑料、硅等材料制成的器件。然而在当时缺乏经验的我看来,电阻就是电阻,电容最多是极化或非极化的,但是如果我们把洋葱剥开,里面的东西要比我们看到的要多得多。

当你从头开始设计第一个项目时,在你设计好电路图之后就要准备材料清单(BOM)了。自然而然的你会访问mouser.com,在搜索框中输入器件名称或编号进行搜索。虽然你知道选择适当的电阻值或额定功率值,但是你可能不太清楚不同类型电阻和电容之间的区别,下面我们就详细探讨一下…..

缩小电阻范围

可选择的数量足以让你的脑袋爆炸(图1)!各种各样电阻和电容类型都有其存在的原因。不同的工艺技术会有不同的性能特点,许多也只应用在非常高端专业的场合,某些大功率的电阻单位成本从几便士到超过100美元。那么大部分厂商在为项目选择电阻和电容时应该考虑什么呢?

“图1:太多类型的电阻了!从哪里开始呢?”
图1:太多类型的电阻了!从哪里开始呢?

根据你要采用的焊接技术,第一件你必须决定的事就是选择通孔还是表面焊接(SMD)组件,通孔组件更容易手工焊接,但是代价是占用电路板(PCB)太多的空间。

碳电阻

碳电阻可能是最常见的电阻了,也是我们最初采用的电阻。在很多初学者开发工具包中都能够见到,这类电阻往往都很便宜,但是会有电磁“噪声”,尤其是它们发热的时候。对于那些对误差要求不严格的场景,比如限制LED灯的电流,碳电阻是非常好的选择。

金属膜电阻

如果你不考虑成本,你可以选择采用金属膜电阻,随着温度的增加它具备更少的噪声以及更好的稳定性,这也使得其更适合高频应用,比如射频电路。此外它可以做成很大阻值的电阻(以百万欧姆来计算)。

绕线电阻

这类电阻的单位成本也相对较高,电阻值通常只有几千欧姆,然而它们往往能够处理很大的电流,而且非常的精确,这使得它们在传感应用中很常见。

薄膜电阻

这类电阻在低成本的碳电阻和高性能金属膜电阻(更小的误差,更高的精确度)以及绕线电阻(更强大的功率处理能力)之间提供了一个很好的折中方案,我认为它是大多数应用选择的默认类型,除非我确定绝对需要另外一种类型或者采用价格更便宜的电阻类型来满足我的需求。

厚膜电阻

这类电阻性能略低于薄膜电阻,但是价格往往也比较便宜。

缩小电容范围

与电阻一样,电容的制造方式也是多种多样,在性能特点和成本上也各有不同。在很大程度上电容之间的差异取决于其组成结构中使用的技术和材料,主要是分隔电容器两侧间的介质。

铝电解电容

这类电容通常是以蓝色和银色的垂直圆柱体(但也不总是)的形式焊接在很多电路板上。它们的价格非常的便宜,单位体积的电容值非常的高,并且能够处理非常高的电压。另一方面它们是由极性的,具有较高的开漏电流,并且随着频率的增加等效串联电阻(ESR)值也不断增加。此外铝电解电容的等效电阻(ESR)随着时间的推移会变差,当铝电解电容失效时就会导致开路问题。它们通常用于电路的电压调节部分。

钽电容

这类电容也是有极性的,价格往往比铝电解电容贵一点。对于增加的价格,钽电容具有更低的开漏电流和更高电容稳定性。相对于铝电解电容,它们一般不能够承受较高的电压,但是承受反向电压时表现的更好。它们最大的优点是体积电容比,通常用在电路板价格比较昂贵的场合,当电容失效时则会导致短路问题。

陶瓷电容

它是最广泛采用的一种电容,陶瓷电容通常是那种橙色小圆盘形状(当然也有其他形状和颜色),在很多电路板上都可以见到。通常它们用于电路板上电源和接地管脚间的连接,这有助于减少电压下降造成的相关问题,电压下降可能导致芯片复位。它们也被用于高速信号耦合和解耦应用,陶瓷电容值的大小一般在几皮法(pF)到几微法(μF),它们的额定电压也比较低,当它们失效时会造成短路问题。

薄膜电容

薄膜电容种类则比较多样,它们采用各种介质材料和工艺技术。在价格上通常要比其他类型的电容要贵一些,但是它们的寄生损耗要小一些,在高电流场景中应用比较广泛。此外它们的精密公差参数使得它们在计时应用中很受欢迎,比如电机速度控制器。当它们失效时,会导致电路开路,然而它们的预期寿命会长达几十年。

总结

希望你能够看到并了解更多类型的电容!本文介绍的内容并不是很详尽,只是收集了多年来我的一些比较重要的经验法则。当然还有很多细微的差别,所以如果这篇文章勾起了你的好奇心,不妨做更多的深入的了解。此外大量采购可以帮助降低单位成本,因此如果你批量生产产品你可以批量采购更高性能的器件,这样会更加经济可靠。

最后一点建议:制造原型时我更喜欢采用通孔类型的器件,这样会简单很多。如果我打算自制一块带有贴片焊接元件的电路板时,我会尽量采用0603、0805、1210和2010这样的封装,可以是薄膜/厚膜类型的元件。

原文链接:

https://www.mouser.cn/blog/mind-your-rs-and-cs-a-look-at-different-types-of-resistors-and-capacitors

该发布文章为独家原创文章,转载请注明来源。对于未经许可的复制和不符合要求的转载我们将保留依法追究法律责任的权利。

围观 46

作者:Mike Parks

很多人在开始手工电子实践时首先要学习的课程之一就是了解上拉电阻。无论是防止微控制器I/O管脚悬空还是两个模块连接之间的开漏电路设计,上拉电阻都是一种必需的但是又很少被重视的元件。那么我们为什么要使用上拉电阻呢?难道我们不能把线路直接连接到器件的Vcc电源管脚上吗?我们应该采用多大阻值的电阻呢?

那么我们为什么要从上拉电阻开始考虑呢?假设我们有一个瞬时常开按钮,我们不希望I/O管脚悬空。为什么不直接将I/O引脚和按钮的一端直接连接到到Vcc上呢?这可以防止微控制器的I/O引脚在没有按下按钮的情况下悬空——它需要一个Vcc或者固定的高电位——然而一旦按下按钮,Vcc与地之间就会发生短路(图1),这会产生大量的热,如果系统采用的是电池供电,那么电池电量很快就会被耗尽。除了避免微控制器悬空I/O管脚的相关问题,在使用开漏拓扑电路时,上拉电阻也是必要的。我们在一篇演讲文章中详细讨论了开漏电路设计。

“”

图1:仅仅一根线路就可能发生短路(左),一个上拉电阻就可以防止输入管脚悬空,同时防止不必要短路现象的发生(来源:作者)

那么我们怎样选择合适的电阻呢?正如大多数工程的问题一样,答案取决于你的应用。首先我们以极端条件0Ω或者1mΩ为例,0Ω电阻(值越小上拉能力越强,因为它们允许通过的电流越大)我们已经讨论过,如果电阻值太小就会经过太大的电流,这可能是不安全的,或者说是效率低下的。如果我们采用1mΩ呢,这样也不安全吗?阻值大的电阻上拉能力弱,因为允许流过的电流小,因此答案是肯定的,但是这也是有代价的。在这些具体情况下需要在效率和功耗之间进行权衡处理。

我们将微控制器的I/O管脚看作是电容,电容积累的电压不能够瞬间改变,而是根据定时常熟(T)进行充放电,数学表达式为T=RC,其中R表示电阻值,C表示电容的值。当我们增加一个非常大的电阻时,这就会在现有电流大小的情况下增加了电容器的充电时间。实际上这意味单片机不能立即检测到按下的按钮,因为需要一段时间来检测到单片机规定的从LOW/OFF状态到HIGH/ON状态的变化。从用户的角度来看这样的电路性能是不可接受的,系统似乎没有及时的作出反应。对于I2C串行通信这样的开漏应用来说,时序常数比较大会对I2C总线产生负面影响,从而使其串行数据线(SDA)和串行时钟线(SCL)达到所需的波特率。

从数学上讲以下是计算电阻值的方法:

Rp(min)为可接受的最小电阻值,由下面方式计算得出:

Rp(min) = (Vcc - VOL(max) ) / IOL 其中:

● Vcc是电源电压
● VOL(max)是单片机I2C管脚检测到为低时的最大电压
● IOL是电压为VOL时的电流值

Rp(max)为可接受的最大电阻值,由下面方式计算得出:

Rp(max) = tr / (0.8473 x Cb) 其中:

● tr是SDL和SCL总线在所需波特率下可接受的上升时间,查看你所用器件的数据手册

● Cb是预计要被驱动的电容负载,附带说明一下,共享I2C总线的器件数量取决于电路板(PCB)和器件输入电容总和。根据I2C规范标准和快速操作模式,这个限制为400pF。之后需要一个I2C缓冲芯片,通常会运行很好,最大限制为112个器件以及7位可寻址的I2C实现方案。

下面是一个比较实用的经验法则,你应该考虑测试电路中的电阻值,看看是否达到了预期性能:

● 一般用于采用1kΩ到10kΩ的阻值
● 如果是低功率应用比如器件采用电池供电那么可以采用10kΩ到100kΩ的阻值

最后要考虑的是很多微控制器都有可以通过代码打开的内置上拉电阻,请务必检测器件数据手册,看看内置电阻值是否适合你的应用,如果不适合,那就不得不增加外部上拉电阻了。

原文链接:

https://www.mouser.cn/blog/pull-up-your-pins-how-to-size-pull-up-resistors

该发布文章为独家原创文章,转载请注明来源。对于未经许可的复制和不符合要求的转载我们将保留依法追究法律责任的权利。

围观 90

非贴片元件的电子元件本体,可以承载较多的产信息,如规格型号、制造厂商、产品序号等。贴片元件的体积或尺寸是以毫米为计的,元件本体上不允许标注太多的信息,标识方法通常有:

1)简化标识法。将常规标识型号进行简化,如将74LS14(六反相器数字IC)标识为LS14;

2)代码标注法,将标识进一步简化,称为代码标注法。如贴片晶体管的-24、1L等,更像是密码,需要用资料“破译”后,才能知道标识背后元件规格型号的含义;

3)无标识。小功率(如16/1W)贴片电阻,和(PF级别)小容量电容,因元件本体太小,无法印出标识,干脆就成为无标识元件。

初学者每每面临这样令人困惑又能非常挠头的问题:如何由IC元件上的标注代码(也称印字),判断是什么器件?如何查找相关IC的电路资料?无标识(印字)元件怎样判断是什么器件,如何测量其好坏?可否用其它型号的元件(甚至非贴片元件)对贴片元件进行代换?贴片元件的封装形式有哪些啊?等等。

贴片电阻

贴片电阻是电路板上应用数量最多的一种元件,形状为矩形,黑色,电阻体上一般标注为白色数字(小型电阻无标识,称无印字贴片电阻),变频器生产厂家在电路板上标注的元件序列号为R(如R1、R147等)。贴片电阻的基本参数有标称阻值、额定功率、误差级别,另外还有最高使用电压、温度系数等,我们只需关注标称功阻值和额定功率值两项参数就可以了。

“图1
图1 贴片电阻外型图

1、贴片电阻的工作参数和类别

1)额定阻值。最常见的有数字标识法。

a、用3位数字电阻值。前2位为十位、个位值,为有效数值,第3位是0的个数或称为10的X次方。如标注为152,即为1500Ω;101,即为100Ω;103,即为10000Ω(10 kΩ)。

1Ω以下的值加R表示,如1R5,即1.5Ω;R10,即0.01Ω。

b、用4位数字表示电阻值。前3位为有效值,即千位、百位和个位值,第4位为0的个数。如标注为1501,即为1500Ω;标注为1000,即为100Ω;标注为681,即为680 Ω;标注为1003,即为100kΩ。1Ω以下的值加R表示,同上。

3色环和4色环阻值标注法,不常见,标注规则同普通电阻,不予赘述;精密型贴片电阻,用代码标注法,由两位数字加一位代码组成,前两位数字为有效值,第3位字母为乘数值。如01A——100Ω,02 C——100kΩ,不常见,但须注意!

2)额定功率。采用数字标识的贴片电阻多为黑色,其功率级别分为1/20W、1/16W、1/8W、1/10W、1/4W、1/2W、1W等,以1/16W、1/8W、1/10W、1/4W应用最多,一般功率越大,电阻体积也越大,功率级别是随着尺寸逐步递增的。另外相同的外形,颜色越深,功率值也越大。耗散功率为1W或1W以上的电阻,考虑到散热要求,不得与印刷线路板直接接触,因而所有电路板上用到的贴片电阻,一般都是小于1W的。贴片电阻的功率值受限,故在电路中需要较大功率电阻的地方,经常采用多只贴片电阻并联(加串联)的方法,来增大功率值。贴片电阻的功率值不在电阻体上直接标注,可以根据电阻的“个头”来判断电阻功率值的大小。

换用电阻元件时,一看数字标注的电阻值,二看电阻的体积大小,符合二者条件时,即可代换。

3)贴片熔断电阻。这是贴片电阻中的一个特殊类型,出于电路安全考虑,不宜用普通贴片电阻予以代换,或轻易用导线短接。

贴片熔断电阻,是在电路中起到熔丝保护作用的一种特殊贴片电阻,一般是串联于某单元电路的供电支路中,当流过该电阻的电流超过一定数值,则其电阻层快速熔断,切断电路该单元电路的供电电源,避免故障扩大化。其电阻体的数字标注为000或0,是贴片熔断电阻的特征,测量其正常电阻值为0Ω。

4)贴片排阻。这是另一类型的贴片电阻,最常见为4引脚2元件贴片排阻、8引脚4元件贴片电阻和10引脚8元件贴片排阻,8此脚4元件贴片排阻其内部含有4只同电阻值的相互独立的电阻元件,标注为472的贴片排阻,指内部含有4只阻值为4.7k的电阻元件,用于集中使用相同阻值电阻元件的电路,如MCU引脚的上位电阻,在MCU的接口电路中应用较多。

“图2
图2 贴片排阻与内部等效电路

2、如何判断贴片电阻的阻值和功率大小?

如果能清晰看出贴片电阻体上的数字标识,判断电阻值和功率值当然不存在问题。如果损坏电阻本身无标注,或已烧毁得面目全非,看不清标注,那么代换前的电阻值判断就要费一点周折了,而且也必须做到心中有数,才能做出下一步的修复。有哪些方法可以作出较为准确的判断呢?

1)参考本机型的相同电路中相对应元件的电阻值。变频器电路中的相同电路很多,如6路IGBT驱动脉冲传输通道,其中6个支路是完全一样的,从MCU脉冲信号输出引脚,至缓冲电路、至驱动IC,至IGBT的栅、射极电路。任何其中1路或数个支路中的电阻或其它元件损坏,可能参考未损坏支路中贴片元件的参数值,如无标识,可在电路板上测量确定或将元件焊脱电路板进行测定。3相输出电流(模拟信号)的传输通道,3个信号检测电路也是一般也是完全相同的,一路有损坏时,可能未损坏两路中的元件参数,确定损坏元件的参数值。

如图3所示,PC5与PC6两路驱动IC的外围电路的元件参数完全相同;PC3与PC8两路驱动IC的外围元件参数完全相同,R17=R51、R23=R48、R22=R49……,当PC3外围有元件损坏坏,可以“照搬”PC5相对应外围元件的参数值进行修复。

同理,对晶体管、二极管、IC芯片等其它元件的损坏,当无法确定损坏元件参数时,可以参照同类型电路元件的参数值进行代换修复。

2)据电路类型确定元件参数。如MCU(微控制器)引脚上连接的上拉、下拉电阻损坏,MCU需外接上拉、下拉电阻的数字端口,一般内部为开漏结构,应用上拉或下拉电阻,可以避免I/O口存在电平漂移状态,维持一个静态的稳定电平。其电阻选值一般为10kΩ、6.8kΩ、5.1kΩ、4.7kΩ、3.3kΩ等,取值过小耗电增大,取值过大,则引发电平漂移或易引入干扰。只要确定损坏贴片电阻为MCU引脚的上位、下接电阻,则可以直接确定该损坏元件的阻值也在3.3~10kΩ的范围之内。当然也可以参考其它上位、下拉电阻的电阻值。

“图3
图3 参考相同电路中元件参数示意图

“图4
图4 MCU引脚的上拉电阻的电路示意图

如图4所示,U2的脉冲引脚的上拉电阻为5.1k,在3.3~10kΩ的范围之内。

3)参考同类机型确定元件参数值。没有相同电路可能参考,也不能像上拉、下拉电阻一样可以大致“估算”出元件的参数,找到同类机型进行比对测量,也能确定损坏元件的参数值。

4)调整试验得出元件的参数值。若无同类机型进行参考,需要费点力气测绘出该部分电路,搞明白损坏电阻在电路中的位置和具体作用,与其它元件的连接方法,“估算”出大致的电阻值,若仍无把握,将损坏电阻,暂时接入电位器,变频器上电,调整电位器进行试验,配合人工信号给定、后续电路对信号作出的反应、面板显示等,测出电位器的电阻值,进而确定损坏电阻的参数。

3、贴片电阻的测量及外观检查

1)用万用表在线测量,电阻值大于标称值时,说明元件有断路性故障或电阻值变大,已经损坏;所测阻值小于标称值时,要考虑到是外围并联元件对其造成的影响,应将元件一端或两端脱开电路进行测量,以便得出确切的测量结果。

2)贴片电阻的外观特征如下:

a、贴片电阻表面二次玻璃体保护膜应覆盖完好,出现脱落,可能已经损坏;

b、元件表面应该是平整的,若再现一些“凸凹”,可能损坏;

c、元件引出端电极一般应平整、无裂痕针孔、无变色现象,如果出现裂纹,可能损坏;

d、贴片电阻体表面颜色烧黑,可能已经损坏;

e、电阻体已经变形,可能损坏。

4、贴片电阻的代换

贴片电阻的代换,除了要求电阻值一样外,还需注意尺寸和功率值。小信号电路(如MCU主板电路)首先要求尺寸一致,便于焊接安装。代换注意事项如下:

1)严格按原参数代换。模拟信号处理电路,如比例放大器电路,对输入电阻、反馈电阻的取值严格,代换元件的电阻值,应与原损坏元件一样,不允许差异过大,否则会引发电路工作失误。

2)用于数字电路的元件,如上接、上拉电阻、隔离电阻等,选值有一定范围,只要令信号电压变化明显,符合高、低电平的要求范围即可。首先应选用相同参数的元件代换。若手头实在不能找到同阻值元件,则可用数值接近的元件代换,一般不会影响到电路性能。如4.7kΩ电阻损坏,用5.1kΩ或6.8kΩ电阻均可以进行代换修复。

3)可用非贴片元件代换。贴片电阻的损坏率极低,除了驱动电路因可能遭受强电冲击经常损坏(可购用部分备件),其它电路的元件很少损坏,可能有1只或两只损坏,类型不一,也无法选购备件。遇到此类损坏元件,用非贴片的1/4W或1/8W普通电阻,来代换也是没有问题的,并非找不到原配件就导致维修进度的“卡壳”。当然焊接时要注意,做好引线整形,尽可能使引线短些,焊接后若有必要涂覆704胶加固,也能达到高质量的修复要求。

贴片电容

贴片电容是电路板上应用数量较多的一种元件,形状为矩形,有黄色、青色、青灰色,以半透明浅黄色者为常见(系高温烧结而成的陶瓷电容,无法印出标识)。小容量(皮发级)电容体上一般无标识,微发级电容才有标识(应用不多,容量稍大的电容,使用带引线的插孔电容)。变频器生产厂家在电路板上标注的元件序列号为C(如C1、C47等),由于变频器实际电路板的元件安装紧凑,一般只标注序号,而不标出容量值。贴片电容的基本参数有电容量、工作电压、漏电流值、误差等,用于小信号电路的供电电压一般为15V以下,如MCU主板的供电为5V,所以实际应用中,仅需注意第一个参数电容量和尺寸(便于安装)就可以了。

“图5
图5 无极性贴片电容、和钽电容贴片元件外形图

应用于变频器电路的贴片电容,主要有无极性小容量贴片电容(用于IC小信号滤波,抑制振铃)、有极性贴片钽电容(为电解电容的一种,用于电源输出端的滤波)两种,耐压在63V以下。容量在10微法级和高耐压电容,往往采用普通电容器。

1、无标识贴片电容的容量估算、检测和代换

1)用于开关电源电路的供电输出端及IC电路的供电输入端的贴片电容,见上图电路左侧元件图示。

在供电输出端,与(滤波)电解电容并联在一起。因电解电容系导电极板和绝缘介质卷绕在一起,具有“电感效应”,高频滤波效果差。并联小容量电容,滤除整流后的高频纹波成分。电路中IC的供电端,也都加有高频滤波电容,以吸收(可能存在由引线形成的寄生电感或由某种干扰带来的)电源扰动。此类电容的电容量一般为0.01~0.1μF左右。该类电容对容量要求并不严格,故障率也比较低。如检查发现有损坏,换用0.01~0.1μF范围内的电容都是可以的。

2)信号通路中的低通滤波器用到的贴片电容。低通滤波器电路,用于对信号中的某一频段内的高频成分进行衰减和吸收,只要求其中的信号中的低频成分(甚至直流成分)通过。变频器的信号传输通路中,多用于将脉动直流信号经RC电路转化成直流信号,因而该电路中的电容量大致在0.01~0.47μF左右,因为电阻R的作用,虽然电容量较小,但RC总的时间常数并不小,也能达到较好的滤波效果。如不好确认容量大小,可以用0.01~0.47μF以内容量的电容试验,以经RC滤波后无明显脉冲动成分为宜。

3)具有特定容量的贴片电容。如MCU晶振引脚的补偿电容,其容量与MCU类型和晶振频率相关,可由MCU的相关资料,和晶振元件的标注频率值,确定该电容的容量,一般为33PF或22PF、15PF。

贴片电容的损坏现象和检测方法:

a、同一类型的电容,个头越大或颜色越深,容量也越大。电容的容量可以用专用的电容测试仪来测定,目前一些数字万用表,也附加此项功能。测电容量时,须将贴片电容至少脱开一端,排除外电路的影响后,再行检测。

b、用万用表检测。如果在线检测,万用表测量得出电容两引脚之间的的电阻值,其实是与电容相连接的外电路“综合电阻值”,若电容处于短路或近于短路情况(电阻值极低)下,才能有所反映。将电容器脱开原电路,测量其电阻值应为无穷大。用指针表的×10k挡测量时,0.1μF左右的电容指针有跳动(充电)现象,静止后归于无穷大。若测得固定电阻值,说明电容损坏。

c、上电检测,由电路判断该点电压低落,可能是电容漏电引起,见下图电路示例。这也是一个比较好的方法。

如下图6所示电路中,测量a点电压正常值应为R221、R22对3V供电的分压值1.5V,若测量电压值高于1.5V,可能系电容C112漏电损坏所致;测b点电压正常值应为3V,若低于3V,可能系电容C56漏电损坏所致。

“图6
图6 电压漏电引起A点电压降低

进一步,可将C112或C56焊脱电路,对其引脚电阻值进行测量验证。

当贴片电容损坏时,也同确定贴片电阻的阻值一样,可参考同类电路,测出好的电容元件的电容量,来确定故障电容的参数。如晶振引脚电容坏掉一只,测另一脚电容元件的电容量即可,两只电容的容量是一样的。

故障电容的代换:贴片电容的故障率较低,各种规格的贴片电容都要备件,显然不是现实的。偶尔发现损坏元件时,用普通的同容量瓷片或绦纶电容来代换,是完全可以的,注意引线尽量要短,焊接质量要好。

2、有极性(有标识)贴片电容的容量识别、检测和代换

有极性贴片电容的外形如图2-11中右侧元件图所示,一般有矩形贴片,圆柱形贴片两种形式,后者的标识与形状与普通电容器相似,易于辨识,不做讨论。矩形贴片电容的颜色多为银白色或黑色,标有横杠的一端为正极(也可通过其在电路中的连接方式进一步判断——带横杠的一端与供电电源的正极连接)。根据封装形式不同,耐压分为A(10V)、B(16V)、C(25V)、D(35V)四个等级,电容量多为数微法至数十微法。

贴片电容的规格型号所包含的参数一般有电容量、额定电压、容量误差、尺寸、封装类型等,不同厂家皆有差异,想记住或弄明白,真是相当困难(也无必要)。

贴片有极性电容的标注法举例:

1)采用数字标注法,采用一位字母+3位数字组成,如A475,数字中前两位为有效值,末位为零的个数,即4700000PF=4.7μF。A为耐压级别,10V。

2)直接标注法。如16V 10,即为10μF,耐压16V的有极性电容。

3)四色环标注法。色环的颜色与数字对应关系,棕(或茶色)1、红2、橙(或橘红色)3、黄4、绿5、蓝6、紫7、灰8、白9、黑0,同普通电阻的色环标注法相同。(从左至右)前两道色环为有效值,第三道色环为零的个数,第四道色环为额定电压标识。如黄紫绿绿,前3环为4700000PF(4.7μF),第四道色环表示额定电压为10V。

4)代码标示法,在没有相关资料的情况下,就比较难于辨识了。须依据代码,按资料“翻译”出电容的容量和耐压等参数值来。

对故障电容器参数的确定,假设从标识上很难判定,则采用上文如对贴片电阻检测判断的其它方法,也能达到判定和确定元件参数的目的,如在电路中一般都能找到相同标识的贴片电容,用电容表测量相同标识的电容,可以判断出电容量,耐压则选用比供电电源高一级别的即可,如5V供电电源下,可选用6.3~16V的都可以。

有极性贴片电容的好坏判断:

贴片电容有击穿短路、内部电极断路、漏电、容量减小等故障,检测方法普通电解电容的检测与判断方法一样。用数字万用表测量电容量,或指针式万用表的电阻挡测量充、放电现象和静态电阻值,都可以判断电容的好坏。

贴片有极性电容的代换:

1)如果易于购到原型号、原封装形式的“原配件”,代换最为方便。原配件的来源一般有两处:采购,从(电子元件商场)供应商,或从(当当网,淘宝网上可购得难以找到原配件的二手器件)网络;废旧电路板上拆用。无论从何处得到的配件,一定要先测量,判定是好的,再往电路板上焊接,焊接前一定要有“测量验证”这一个环节,避免查出一个坏元件,再换上一个坏元件,使检修进入误区导致修复失败的现象发生。

2)贴片有极性电容的损坏率也是相当低的。如果安装空间许可,用普通的同容量和耐压符合要求的电解电容来代换,也没有什么问题,注意选用质量优良(温度系数小,性能稳定)的电解电容,焊接引脚要短,焊接后可用704胶加固。

贴片电感

贴片电感元件在电路中的应用数量较少,仅仅在低压直流控制电源的输出端,见到其应用,与滤波电容构成CLC的π形滤波电路,有(抑制电流突变)稳定输出电流的作用。电感元件,由单线圈组成,有的带磁心(电感量较大),单位一般用μH和mH表示,流通电流值为几毫安至几百毫安。

贴片电感有圆形、方形和矩形等封装形式,颜色多为黑色。带铁心电感(或圆形电感),从外形上看易于辨识。但有些矩型电感,从外型上看,更像是贴片电阻元件。变频器生产厂家对电路板上贴片电感的标号,标有“L”字样。电感的工作参数有电感量、Q值(品质因数)、直流电阻、额定电流、自谐频率等,但贴片电感受体积局限,大多只标注出电感量,其它参数未予标注,而且往往是间接标注法——贴片电感本体上标注,只是整个规格型号的部分信息,即大多只是电感量信息。

“图7
图7 贴片电感外形图

贴片电感的标注举例:实际(印字)标注——101,完整型号——MPI 0610 M T 101(含有类型、尺寸、误差、封装形式、电感量等信息),是电感量为100μH的贴片电感。1R1,是电感量为1.1μH的贴片电感。有的用一个字母表示电感(代码标注法),实际标注——E,完整型号——MPE0312NT2R7,是电感量为2.7μH的贴片电感。

贴片电感的辨识方法:

1)从外型,如带磁心方形或圆形电感,体积稍大,能看出磁心和线圈;

2)有的贴片电感从外形上与贴片电阻一样,但没有数字与字母标注,只有一个小圆圈的标注,意为电感元件;

3)在电路中的元件序号,往往标为L字样,如“L1”、“DL1”等。

4)有电感量标注,如100。

5)理想电感的交流电阻较大,而直流电阻为零。电感元件的测量电阻值极小,电阻值近于为零欧姆。从3)、4)、5)项,配合观察和测量(在电路中的位置和作用),能区别出元件是贴片电阻还是贴片电感,并判定出电感元件。

6)用专用电感量测试仪,将元件脱开电路,测量其电感量。

贴片电感的好坏判别:

1)首先确定是电感元件;

2)观察外型有无变形、变色、碎裂等,若有以上现象,可能已经损坏;

3)用万用表的小电阻挡位(如200挡或×1挡),测直流电阻应近于0。若测量电阻值较大或无穷大,说明电感元件损坏。

贴片电感的故障代换:

1)可从废旧电路板上拆同型号元件代换;

2)先确定电感量和流通电流值,用普通带引脚电感元件代替,并做好固定;

3)自行绕制,制作电感代用,有一定操作难度;

4)如果对电路性能无明显影响,应急修复可暂时短接(仅供参考,并不提倡这个修复方法,有可能降低产品的某些性能)。

本文转载自:可靠性技术交流
声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有,如涉及侵权,请联系小编邮箱:cathy@eetrend.com 进行处理。

点击这里,获取更多关于应用和技术的有关信息
点击这里,获取更多工程师博客的有关信息

围观 36

什么是精密电阻 ?

其实,对于不是搞计量的不需要分的那么清楚,可以大体上认为高精密、高准确、低误差等是一个意思。但是,对于“精度”一词,可以分解成分解成三个要素:

1. 温度系数。温度变化是电阻的大敌,温度系数一般用ppm/℃表示,即温度变化1度对应电阻变化百万分之几。100ppm/℃就是0.01%/℃。

2. 老化。也就是长期稳定性,一般用ppm/年来表示,也有用%/年来表示的。出厂再怎么准确的电阻,如果老化大,那么很快就变了,也就失去高准确的意义了。

3. 初始调整误差,这个其实不太重要,知道偏差是多少,只要不变就没关系,测量时可以修正。因此,在本文里没做进一不讨论。

对于精度不太高的电阻,我们可以不分,笼统的说某电阻精度是多少。比如0.1%精度的电阻,就是一个综合误差,实际上是说,在常温下(比如10℃-35℃)、1年之内,包括所有的误差,应该仍然能保证电阻在0.1%之内。

但是,对于要求高的地方,电阻的具体特性将被测试,这样才好选用。本文就将把常见的高精度电阻器按照温度系数和老化两个指标做一描述。

常见的精密电阻有三类:金属膜电阻、线绕电阻和块电阻。

金属膜电阻是最常见的,但好一些的为精密金属膜电阻,特点是温度系数不大,阻值比较稳定。但由于膜比较薄因此相对脆弱一些,螺旋切割和压接部分容易出问题。

· 线绕电阻也是很常用的,甚至一度是高准确设备的主打电阻。采用的电阻丝材料现在有三种:
--康铜,比较古老,耐热但温度系数不太好,与铜的热电动势较高。

--锰铜,有精密锰铜,尽管热但温度不太高但温度系数很小,与铜的热电动势小,是广泛采用的线绕电阻材料。

--Evanohm,被翻译成埃佛诺姆,是一种镍铬铝铜合金,也可以简称镍铬电阻合金,温度系数最小,材料比较硬,焊接性能不太好。

· 块电阻,又叫金属箔电阻,国外厂家以Vishay为代表,是在陶瓷基片粘上合金电阻层然后无感光刻,不仅采用了镍铬电阻合金材料,而且陶瓷衬底做进一步温度补偿,使得温度系数非常小,很多能做到<1ppm/℃。国产的型号为RJ711,性能差一些。

以下为精密电阻分类特性图,基础数据是基于自己多年的收集、积累、测试整理而成。横轴为温度系数,纵轴为老化率,因此,任何一个电阻都可以在这图有一个位置,越靠近左下角表明电阻越好。

“”

下面分别对这些典型电阻做一介绍。

1. 普通金属膜电阻,体积一般比较小,电阻膜比较薄,温度系数和老化一般,除了高阻(>1M)和低阻抗(<5)以外,1%可以保证。

2. 绿袍电阻。这是对80年代中后期出现的一种金属膜电阻的称呼,因为外观呈深绿色而得名,见于MF12和MF14万用表中。但根据自己的实测,性能一般,老化、偏差和温度系数都与红袍电阻相差很大。

3. 红袍电阻,代号RJJ,高稳定低温度系数精密金属膜,体积大,性能很好,经过自己的测试,多年的电阻,老化很少有超过0.5%的,温度系数都在30ppm/℃左右。请注意,红袍电阻还有一种是普通精度的,代号RJ,性能一般。

4. 一般线绕电阻,采用锰铜或康铜电阻丝,非密封(只上漆),由于线径一般比较粗因此老化指标不错,但温度系数不算太好,一般是15ppm/℃到35ppm/℃之间。

5. 精密线绕,电阻丝一般采用精密锰铜,密封后稳定性得到提高,实际测试了大量的0.01%电阻,绝大多数数年后仍然能保持在0.02%之内。温度系数也因为选材和工艺达到较高水平,大约是5ppm/℃到20ppm/℃之间。新品价格大约5元/只。

(另外,国产还有一种高密封线绕,稳定性更好一些)

“”

“”

6. 低TC(温度系数)线绕电阻,常见于老式国外(比如Fluke)各种精密仪器中,采用镍铬电阻合金,温度系数非常低,一般在1ppm/℃到5ppm/℃之间,有的电阻每一只都标明了实测温度系数。老化也不大,基本在20ppm/年之内,二手价格大约10元/只。这样的电阻进行标定后,可以作为一般标准电阻来用。

“”

“”

7. 全密封线绕,电阻丝材料同上,但采用金属壳密封(引线是后焊接的)完全杜绝了潮湿和氧化因此稳定性很高,达到8ppm/年左右,温度系数也大多在1ppm/℃之内,广泛用于老一代高等级计量仪器和标准电阻中,我有一篇专门的文章做过详细介绍。二手价格大约50元/只。

“”

8. 塑封块电阻。由于采用镍铬电阻合金和补偿技术,温度系数可以做的非常低,甚至<1ppm/℃。但该电阻由于密封不太好因此老化特性不是很好,只能保证25ppm/年,典型值12.5ppm/年。新品价格约50元/只,二手约20元/只。这样的电阻也常常被音响发烧友采用,因为除了上述特性外,还具备超低噪音和无感等优良特性。

“”

“”

“”

9. 金封块电阻,这是目前最高等级的电阻,内部结构同上但采用金属陶瓷密封(外形类似晶振),彻底杜绝外界老化因素,同时零温度系数技术使得温度系数达到很难测量出来的程度。老化典型值2ppm/年,有的达到0.5ppm/年以下。新品价格大约400元/只,西方国家对我国实行封锁,严禁进口用于军事目的,连8位半的万用表3458A也仅仅用了一只(做内部标准电阻)。

“”

“”

“”

应该看到,即便是同一类的电阻,不同厂家、不同时代的产品,差别也很大,这里只是尽量找一个典型的范围而已。

附:指针万用表最好用什么电阻呢?

选择电阻要看万用表的等级,一般采用等级的1/4或1/5,比如2.5级的选0.5%,1级的选0.2%或0.25%。

线绕的是最好的,稳定而且温度系数小,但阻值高的很难做,因此大部分是低阻值的用线绕。唯一见有5M电阻仍然用线绕的是MF35。

电压测量档等需要3M到5M的高阻值电阻,一般只能选金属膜的。而高阻高精度的金属膜也比较难,需要高阻膜(这样稳定性可能要变差)、大体积。传统的红袍RJJ精密金属膜是很合适的。

业余条件下如果很追求性能,可选用6环1M金属膜0.1%的电阻多个进行串联。

“”

本文转载自:网络
声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有,如涉及侵权,请联系小编邮箱:
cathy@eetrend.com 进行处理。

点击这里,获取更多关于应用和技术的有关信息

围观 45

页面