发现这些细节,就能拯救电路。很多人都一样,我们很多工程师在完成一个项目后,发现整个项目大部分的时间都花在“调试检测电路整改电路”这个阶段,也正是这个阶段,很多项目没有办法进行下去,停滞在那边。想要快速完成项目,摆脱实验调试时的烦闷,苦恼不知道问题出在哪里,就快点了解下面这些电路设计中的细节!

“”

(1)为了获得具有良好稳定性的反馈电路,通常要求在反馈环外面使用一个小电阻或扼流圈给容性负载提供一个缓冲。

(2)积分反馈电路通常需要一个小电阻(约560欧)与每个大于10pF的积分电容串联。

“”

(3)在反馈环外不要使用主动电路进行滤波或控制EMC的RF带宽,而只能使用被动元件(最好为RC电路)。仅仅在运放的开环增益比闭环增益大的频率下,积分反馈方法才有效。在更高的频率下,积分电路不能控制频率响应。

(4)为了获得一个稳定的线性电路,所有连接必须使用被动滤波器或其他抑制方法(如光电隔离)进行保护。

(5)使用EMC滤波器,并且与IC相关的滤波器都应该和本地的0V参考平面连接。

(6)在外部电缆的连接处应该放置输入输出滤波器,任何在没有屏蔽系统内部的导线连接处都需要滤波,因为存在天线效应。另外,在具有数字信号处理或开关模式的变换器的屏蔽系统内部的导线连接处也需要滤波。

(7)在模拟IC的电源和地参考引脚需要高质量的RF去耦,这一点与数字IC一样。但是模拟IC通常需要低频的电源去耦,因为模拟元件的电源噪声抑制比(PSRR)在高于1KHz后增加很少。在每个运放、比较器和数据转换器的模拟电源走线上都应该使用RC或LC滤波。电源滤波器的拐角频率应该对器件的PSRR拐角频率和斜率进行补偿,从而在整个工作频率范围内获得所期望的PSRR。

“”

(8)对于高速模拟信号,根据其连接长度和通信的最高频率,传输线技术是必需的。即使是低频信号,使用传输线技术也可以改善其抗干扰性,但是没有正确匹配的传输线将会产生天线效应。

(9)避免使用高阻抗的输入或输出,它们对于电场是非常敏感的。

(10)由于大部分的辐射是由共模电压和电流产生的,并且因为大部分环境的电磁干扰都是共模问题产生的,因此在模拟电路中使用平衡的发送和接收(差分模式)技术将具有很好的 EMC效果,而且可以减少串扰。平衡电路(差分电路)驱动不会使用0V参考系统作为返回电流回路,因此可以避免大的电流环路,从而减少RF辐射。

“”

(11)比较器必须具有滞后(正反馈),以防止因为噪声和干扰而产生的错误的输出变换,也可以防止在断路点产生振荡。不要使用比需要速度更快的比较器(将dV/dt保持在满足要求的范围内,尽可能低)。

(12)有些模拟IC本身对射频场特别敏感,因此常常需要使用一个安装在PCB上,并且与 PCB的地平面相连接的小金属屏蔽盒,对这样的模拟元件进行屏蔽。

本文转载自:面包板
声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有,如涉及侵权,请联系小编邮箱:cathy@eetrend.com 进行处理。

围观 15

与分立器件相比,现代集成运算放大器(op amp)和仪表放大器(in-amp)为设计工程师带来了许多好处。虽然提供了许多巧妙、有用并且吸引人的电路。往往都是这样,由于仓促地组装电路而会忽视了一些非常基本的问题,从而导致电路不能实现预期功能 - 或者可能根本不工作。本文将讨论一些最常见的应用问题,并给出实用的解决方案。

AC耦合时缺少DC偏置电流回路

最常遇到的一个应用问题是在交流(AC)耦合运算放大器或仪表放大器电路中没有提供偏置电流的直流(DC)回路。在图1中,一只电容器与运算放大器的同相输入端串联以实现AC耦合,这是一种隔离输入电压(VIN)的DC分量的简单方法。这在高增益应用中尤其有用,在那些应用中哪怕运算放大器输入端很小的直流电压都会限制动态范围,甚至导致输出饱和。然而,在高阻抗输入端加电容耦合,而不为同相输入端的电流提供DC通路,会出现问题。

“图1.错误的运算放大器AC耦合”
图1.错误的运算放大器AC耦合

实际上,输入偏置电流会流入耦合的电容器,并为它充电,直到超过放大器输入电路的共模电压的额定值或使输出达到极限。根据输入偏置电流的极性,电容器会充电到电源的正电压或负电压。放大器的闭环DC增益放大偏置电压。

这个过程可能会需要很长时间。例如,一只场效应管(FET)输入放大器,当1 pA的偏置电流与一个0.1μF电容器耦合时,其充电速率I/C为10–12/10–7=10 μV/s,或每分钟600μV。如果增益为100,那么输出漂移为每分钟0.06 V。因此,一般实验室测试(使用AC耦合示波器)无法检测到这个问题,而电路在数小时之后才会出现问题。显然,完全避免这个问题非常重要。

“图2.正确的双电源供电运算放大器AC耦合输入方法”
图2.正确的双电源供电运算放大器

图2示出了对这常见问题的一种简单的解决方案。这里,在运算放大器输入端和地之间接一只电阻器,为输入偏置电流提供一个对地回路。为了使输入偏置电流造成的失调电压最小,当使用双极性运算放大器时,应该使其两个输入端的偏置电流相等,所以通常应将R1的电阻值设置成等于R2和R3的并联阻值。

然而,应该注意的是,该电阻器R1总会在电路中引入一些噪声,因此要在电路输入阻抗、输入耦合电容器的尺寸和电阻器引起的Johnson噪声之间进行折衷。典型的电阻器阻值一般在100,000Ω ~1 MΩ之间。

类似的问题也会出现在仪表放大器电路中。图3示出了使用两只电容器进行AC耦合的仪表放大器电路,没有提供输入偏置电流的返回路径。这个问题在使用双电源(图3a)和单电源(图3b)供电的仪表放大器电路中很常见。

“图3.不工作的AC耦合仪表放大器实例”
图3.不工作的AC耦合仪表放大器实例

这类问题也会出现在变压器耦合放大器电路中,如图4所示,如果变压器次级电路中没有提供DC对地回路,该问题就会出现。

“图4.不工作的变压器耦合仪表放大器电路”
图4.不工作的变压器耦合仪表放大器电路

图5和图6示出了这些电路的简单解决方案。这里,在每一个输入端和地之间都接一个高阻值的电阻器(RA,BR)。这是一种适合双电源仪表放大器电路的简单而实用的解决方案。

“”
a.双电源. b.单电源.

这两只电阻器为输入偏置电流提供了一个放电回路。在图5所示的双电源例子中,两个输入端的参考端都接地。在图5b所示的单电源例子中,两个输入端的参考端或者接地(VCM接地)或者接一个偏置电压,通常为最大输入电压的一半。

同样的原则也可以应用到变压器耦合输入电路(见图6),除非变压器的次级有中间抽头,它可以接地或接VCM。

在该电路中,由于两只输入电阻器之间的失配和(或)两端输入偏置电流的失配会产生一个小的失调电压误差。为了使失调误差最小,在仪表放大器的两个输入端之间可以再接一只电阻器(即桥接在两只电阻器之间),其阻值大约为前两只电阻器的1/10(但与差分源阻抗相比仍然很大)。

“图6.正确的仪表放大器变压器输入耦合方法”
图6.正确的仪表放大器变压器输入耦合方法

为仪表放大器、运算放大器和ADC提供参考电压

图7示出一个仪表放大器驱动一个单端输入的模数转换器(ADC)的单电源电路。该放大器的参考电压提供一个对应零差分输入时的偏置电压,而ADC的参考电压则提供比例因子。在仪表放大器的输出端和ADC的输入端之间通常接一个简单的RC低通抗混叠滤波器以减少带外噪声。设计工程师通常总想采用简单的方法,例如电阻分压器,为仪表放大器和ADC提供参考电压。因此在使用某些仪表放大器时,会产生误差。

“图7.仪表放大器驱动ADC的典型单电源电路”
图7.仪表放大器驱动ADC的典型单电源电路

正确地提供仪表放大器的参考电压

一般假设仪表放大器的参考输入端为高阻抗,因为它是一个输入端。所以使设计工程师一般总想在仪表放大器的参考端引脚接入一个高阻抗源,例如一只电阻分压器。这在某些类型仪表放大器的使用中会产生严重误差(见图8)。

“图8.错误地使用一个简单的电阻分压器直接驱动3运放仪表放大器的参考电压”
图8.错误地使用一个简单的电阻分压器直接驱动3运放仪表放大器的参考电压

例如,流行的仪表放大器设计配置使用上图所示的三运放结构。其信号总增益为

“”

参考电压输入端的增益为1(如果从低阻抗电压源输入)。但是,在上图所示的电路中,仪表放大器的参考输入端引脚直接与一个简单的分压器相连。这会改变减法器电路的对称性和分压器的分压比。这还会降低仪表放大器的共模抑制比及其增益精度。然而,如果接入R4,那么该电阻的等效电阻会变小,减小的电阻值等于从分压器的两个并联支路看过去的阻值(50 kΩ),该电路表现为一个大小为电源电压一半的低阻抗电压源被加在原值R4上,减法器电路的精度保持不变。

如果仪表放大器采用封闭的单封装形式(一个IC),则不能使用这种方法。此外,还要考虑分压电阻器的温度系数应该与R4和减法器中的电阻器保持一致。最终,参考电压将不可调。另一方面,如果尝试减小分压电阻器的阻值使增加的电阻大小可忽略,这样会增大电源电流的消耗和电路的功耗。在任何情况下,这种笨拙的方法都不是好的设计方案。

图9示出了一个更好的解决方案,在分压器和仪表放大器参考电压输入端之间加一个低功耗运算放大器缓冲器。这会消除阻抗匹配和温度系数匹配的问题,而且很容易对参考电压进行调节。

“图9.利用低输出阻抗运算放大器驱动仪表放大器的参考电压输入端”
图9.利用低输出阻抗运算放大器驱动仪表放大器的参考电压输入端

当从电源电压利用分压器为放大器提供参考电压时应保证PSR性能

一个经常忽视的问题是电源电压VS的任何噪声、瞬变或漂移都会通过参考输入按照分压比经过衰减后直接加在输出端。实际的解决方案包括旁路滤波以及甚至使用精密参考电压IC产生的参考电压,例如ADR121,代替VS分压。

当设计带有仪表放大器和运算放大器的电路时,这方面的考虑很重要。电源电压抑制技术用来隔离放大器免受其电源电压中的交流声、噪声和任何瞬态电压变化的影响。这是非常重要的,因为许多实际电路都包含、连接着或存在于只能提供非理想的电源电压的环境之中。另外电力线中的交流信号会反馈到电路中被放大,而且在适当的条件下会引起寄生振荡。

现代的运算放大器和仪表放大器都提供频率相当低的电源电压抑制(PSR)能力作为其设计的一部分。这在大多数工程师看来是理所当然的。许多现代的运算放大器和仪表放大器的PSR指标在80~100dB以上,可以将电源电压的变化影响衰减到1/10,000~1/100,000。甚至最适度的40 dB PSR的放大器隔离对电源也可以起到1/100的抑制作用。不过,总是需要高频旁路电容(正如图1~7所示)并且经常起到重要作用。

此外,当设计工程师采用简单的电源电压电阻分压器并且用一只运算放大器缓冲器为仪表放大器提供参考电压时,电源电压中的任何变化都会通过该电路不经衰减直接进入仪表放大器的输出级。因此,除非提供低通滤波器,否则IC通常优良的PSR性能会丢失。

在图10中,在分压器的输出端增加一个大电容器以滤除电源电压的变化并且保证PSR性能。滤波器的-3 dB极点由电阻器R1/R2并联和电容器C1决定。-3 dB极点应当设置在最低有用频率的1/10处。

“图10.保证PSR性能的参考端退耦电路”
图10.保证PSR性能的参考端退耦电路

上面示出的CF试用值能够提供大约0.03 Hz的–3 dB极点频率。接在R3两端的小电容器(0.01 μF)可使电阻器噪声最小。

该滤波器充电需要时间。按照试用值,参考输入的上升时间应是时间常数的几倍(这里T=R3Cf= 5 s),或10~15s。

图11中的电路做了进一步改进。这里,运算放大器缓冲器起到一个有源滤波器的作用,它允许使用电容值小很多的电容器对同样大的电源退耦。此外,有源滤波器可以用来提高Q值从而加快导通时间。

“图11.将运算放大器缓冲器接成有源滤波器驱动仪表放大器的参考输入引脚”
图11.将运算放大器缓冲器接成有源滤波器驱动仪表放大器的参考输入引脚

测试结果:利用上图所示的元件值,施加12 V电源电压,对仪表放大器的6 V参考电压提供滤波。将仪表放大器的增益设置为1,采用频率变化的1 VP-P正弦信号调制12 V电源。在这样的条件下,随着频率的减小,一直减到大约8 Hz时,我们在示波器上看不到AC信号。当对仪表放大器施加低幅度输入信号时,该电路的测试电源电压范围是4 V到25 V以上。电路的导通时间大约为2 s。

单电源运算放大器电路的退耦

最后,单电源运算放大器电路需要偏置共模输入电压幅度以控制AC信号的正向摆幅和负向摆幅。当从电源电压利用分压器提供偏置电压时,为了保证PSR的性能就需要合适的退耦。

一种常用但不正确的方法是利用100 kΩ/100 kΩ电阻分压器(加0.1μF旁路电容)提供VS/2给运算放大器的同相输入端。使用这样小的电容值对电源退耦通常是不够的,因为极点仅为32 Hz。电路出现不稳定(“低频振荡”),特别是在驱动感性负载时。

图12(反相输入)和图13(同相输入)示出了达到最佳退耦结果的VS/2偏置电路。在两种情况中,偏置电压加在同相输入端,反馈到反向输入端以保证相同的偏置电压,并且单位DC增益也要偏置相同的输出电压。耦合电容器C1使低频增益从BW3降到单位增益。

“图12.单电源同相输入放大器电路正确的电源退耦方案。中频增益=1+R2/R1”
图12.单电源同相输入放大器电路正确的电源退耦方案。中频增益=1+R2/R1

如上图所示,当采用100 kΩ/100 kΩ电阻分压器时一个好的经验是,为获得0.3 Hz的–3 dB截止频率,应当选用的C2最小为10 ΩF,。而100 μF(0.03 Hz)实际上对所有电路都足够了。

“图13.单电源反相输入放大器正确的退耦电路,中频增益=
图13.单电源反相输入放大器正确的退耦电路,中频增益= – R2/R1

本文转载自:张飞实战电子
声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有,如涉及侵权,请联系小编邮箱:cathy@eetrend.com 进行处理。

围观 34

我们并不指望采用一个 5V 低功率运放来产生一个具 –100dBc 失真的正弦波。虽然如此,采用 LTC6258 的带通滤波器仍然能够与一个易用型低功率振荡器相组合,以在低成本、低电压和极低功耗的情况下产生实用正弦波。

LTC6258 为何如此“神奇”呢?

有源滤波器

图 1 所示的带通滤波器是 AC 耦合至一个输入。因此,LTC6258 输入并没有给前一个电路级施加负担来生成一个特定的绝对共模电压。一个由 RA1 和 RA2 构成的简单电阻分压器负责为 LTC6258 带通滤波器提供偏置。把运放输入规定在一个固定的电压有助于减小可能由于共模的移动而出现的失真。
37993

“”

该滤波器的中心频率为 10kHz。确切的电阻和电容值可以向上或向下微调,这取决于最重要的是实现最低的电阻噪声还是最小的总电源电流。该实施方案通过减小反馈环路中的电流以为低功耗实现优化。电容器 C2 和 C3 最初为 4.7nF 或更高,并采用较低的电阻器阻值。最后,为实现较低的功耗采用了 1nF 电容器和较高阻值的电阻器。

除了功耗之外,反馈阻抗第二个同样重要的方面是运放轨至轨输出级的负载。较重的负载 (例如:介于 1K 和 10K之间的阻抗) 显著地降低开环增益,这反过来又影响着带通滤波器的准确度。产品手册建议把 AVOL 降低 5 倍 (阻抗从 100kΩ 至 10kΩ)。采用较低的 C2 和 C3 可能是可行的,但是这样 R6 会变得更大,从而在输出端上引起更大的噪声。

该带通滤波器的目标 Q 值是适中的,大约为 3。一个适中的 Q 值 (而不是高 Q 值) 允许使用准确度为 5% 的电容器。较高的 Q 值将要求使用更准确的电容器,而且非常有可能需要高于采用反馈阻抗负载可提供的开环增益 (在 10kHz)。当然,与较高的 Q 值相比,适中的 Q 值所产生的谐波衰减幅度会较小。
37994

“”

增设振荡器

通过把一个方波驱动至带通滤波器中可获得一个低功率正弦波发生器。在图 3 示出了一个完整的电路原理图。LTC6906 微功率电阻器设定的振荡器可容易地配置为一个 10kHz 方波,并能驱动带通滤波器输入电阻器中相对温和的负载。LTC6906 在 10kHz 时的电源电流为 32.4μA。

图 4 示出了 LTC6906 输出和带通滤波器输出。正弦波的 HD2 为 –46.1dBc,HD3 为 –32.6dBc。输出为1.34VP-P 至 1.44VP-P,具有由于有限的运放开环增益 (在 10kHz) 引起轻微变化的精确电平。当采用一个 3V 电源轨时,总的电流消耗低于 55μA。

“”

其他增强功能

图 5 示出了可任选的增强功能。一个低功率基准利用了 LTC6906 和 LTC6258 的能力以在非常低的电源工作。该基准从一个电池输入提供 2.5V。固定的 2.5V 电源可在输入电压变化的情况下稳定输出电压摆幅。此外,更低的滤波器电容值和较高的电阻进一步减小了 LTC6258 的负载,从而可降低功耗并改善滤波器的准确度。

“”

结论

LTC6258 / LTC6259 / LTC6260 系列 (单、双、四路) 可在 20μA 的低电源电流下提供 1.3MHz 增益带宽,并具有 400μV 的最大失调电压以及轨至轨输入和输出。结合 1.8V 至 5.25V 电源,这些运放可实现要求在低功率和低电压条件下以低成本提供卓越性能的应用。

本文转载自:亚德诺半导体
声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有,如涉及侵权,请联系小编邮箱:cathy@eetrend.com 进行处理。

围观 9

一、单片机上拉电阻的选择

“”

大家可以看到复位电路中电阻R1=10k时RST是高电平 ,而当R1=50时RST为低电平,很明显R1=10k时是错误的,单片机一直处在复位状态时根本无法工作。出现这样的原因是由于RST引脚内含三极管,即便在截止状态时也会有少量截止电流,当R取的非常大时,微弱的截止电流通过就产生了高电平。

二、LED串联电阻的计算问题

通常红色贴片LED:电压1.6V-2.4V,电流2-20mA,在2-5mA亮度有所变化,5mA以上亮度基本无变化。

“”

三、端口出现不够用的情况

这时可以借助扩展芯片来实现,比如三八译码器74HC138来拓展

“”

“”

四、滤波电容

滤波电容分为高频滤波电容和低频滤波电容。

1、高频滤波电容一般用104容(0.1uF),目的是短路高频分量,保护器件免受高频干扰。普通的IC(集成)器件的电源与地之间都要加,去除高频干扰(空气静电)。

2、低频滤波电容一般用电解电容(100uF),目的是去除低频纹波,存储一部分能量,稳定电源。大多接在电源接口处,大功率元器件旁边,如:USB借口,步进电机、1602背光显示。耐压值至少高于系统最高电压的2倍。

五、三极管的作用

1、开关作用:

“”

LEDS6为高电平时截止,为低电平时导通。

限流电阻的计算:集电极电流为I,则基极电流为I/100(这里涉及到放大作用,集电极电流是基极的100倍),PN结电压0.7V,R=(5-0.7)/(I/100)

2、放大作用:

集电极电流是基极电流的100倍

3、电平转换:

“”

当基极为高电平时,三极管导通,右侧的导线接地为低电平,当基极为低电平时,三极管截止,输出高电平.

六、数码管的相关问题

“”

数码管点亮形成的数字由a,b,c,d,e,f,e,dp(小数点)构成,字模及真值表如上图。

七、电流电压驱动问题

由于单片机输出有限,当负载很多的时候需要另外加驱动芯片 ,比如74HC245

八、上拉电阻

上拉电阻选取原则

1、从节约功耗及芯片灌电流能力考虑应当足够大;电阻大,电流小。

2、从确保足够的驱动电流考虑应当足够小;电阻小,电流大。

3、对于高速电路,过大的上拉电阻可能会导致边沿变平缓。

综合考虑:上拉电阻常用值在1K到10K之间选取,下拉同理。

上下拉电阻

上拉就是将不确定的信号通过一个电阻嵌位在高电平,下拉同理。

1、电平转换,提高输出电平参数值。

2、OC门必须加上拉电阻才能使用。

3、加大普通IO引脚驱动能力。

4、悬空引脚上下拉抗干扰。

九、晶振和复位电路

晶振电路

1、晶振选择:

根据实际系统需求选择,6M,12M,11.0592M,20M等待

2、负载电容:

对地接2个10到30pF的电容即可,常用20pF。

3、万用表测晶振:

直接用红表笔对晶振引脚,黑表笔接GND,测量电压即可。

复位电路

复位

把单片机内部电路设置成为一个确定的状态,所有的寄存器初始化。

51单片机的复位时间大约在2个机械周期左右,具体需要看芯片数据手册。

一般通过复位芯片或者复位电路,具体的阻容参数的计算,通过google查找。

十、按键抖动及消除

按键也是机械装置,在按下或放开的一瞬间会产生抖动,如下图:

“”

“”

消除方法有两种:软件除抖和硬件除抖,其中硬件除抖是应用了电容对高频信号短路的原理。

软件除抖是检测出键闭合后执行一个延时程序,产生5ms~10ms的延时,让前沿抖动消失后再一次检测键的状态,如果仍保持闭合状态电平,则确认为真正有键按下。

本文转载自:电子发烧友网
转载地址:http://www.elecfans.com/d/595432.html
声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有,如涉及侵权,请联系小编邮箱:cathy@eetrend.com 进行处理。

围观 9

进阶篇

目录

1、前言

2、个别S参数与串联S参数的差别

3、双埠S参数对地回路效应的处理

4、两个2-port S参数,有可能组成一个4-port S参数吗?

5、全3D模型的S参数,与分开的3D模型S参数串连的差别?

6、Port阻抗的设定,对S参数本质上,与S参数的使用上,有没有影响?

7、Export S参数模型时,有没有做port renormalize to 50 ohm,对使用S参数有没有影响?

8、问题与讨论

1、前言

S参数是SI与RF领域工程师必备的基础知识,大家很容易从网络或书本上找到S,Y,Z参数的说明,笔者也在多年前写了S参数 -- 基础篇。但即使如此,在相关领域打滚多年的人, 可能还是会被一些问题困扰着。你懂S参数吗? 请继续往下看...

2、个别S参数与串联S参数的差别

问题1:为何有时候会遇到每一段的S参数个别看都还好,但串起来却很差的情况(loss不是1+1=2的趋势)?

Quick answer : 如果每一线段彼此连接处的real port Zo是匹配的,那loss会是累加的趋势,但若每一线段彼此连接处的real port Zo差异很大,那就会看到loss不是累加的趋势,因为串接的接面上会有多增加的反射损失。

(1)下图所示的三条传输线

Line1是一条100mm长,特性阻抗设计在50ohm的微带线,左边50mm,右边50mm。

Line2也是一条100mm长的微带线,左边50mm维持特性阻抗50ohm,但右边50mm线宽加倍,特性阻抗变 小到33。

Line3也是一条100mm长的微带线,左边50mm维持特性阻抗50ohm,但右边50mm线宽加倍,特性阻抗变 小到33,且呈135o转折。

“”

观察Line1的S21发现,左右两段的S参数有累加特性

“”

观察Line2, Line3的S21发现, 整条线的S参数比起左右两段个别看的S参数之累加差一些

“”

问题2:为何各别抽BGA与PCB的S参数后,在Designer内串接看总loss,与直接抽BGA+PCB看S参数的结果不同?

Quick answer : 这与结构在3D空间上的交互影响,还有下port位置有时也有影响。

(2)下图所示是两层板BGA封装,放上有完整参考平面的PCB两层板, 这是在消费性电子产品很常见的应用条件。

黄色是高速的差动对讯号,其在PCB上走线的部分,有很好的完整参考平面,但在BGA端则完全没有参考平面。

“”

“”

HFSS 3D Layout模拟结果

3、双埠S参数对地回路效应的处理

问题1:RLC等效电路可以估出讯号线与地回路每一段的RLC特性,但S参数却不行,原因是什么? S参数带有地回路的寄生效应吗?

Quick answer : RLC等效电路是terminal base model,而S参数是port base model,后者看的昰一个port的正负两端之间的差值。所以S参数虽然有含地回路(return path)寄生效应,但无法单独分离出地回路的影响。

问题2:在Designer汇入S参数模型时,可以选择该S参数的电路符号要不要有每一个port的reference ground (negative terminal),或是使用common ground,使用common ground是否表示把每个port的negative terminal短路,会忽略地回路的寄生效应吗?

Quick answer : 使用common ground,并不会把return path两端short,S参数本身已经内含地回路的效应。

4、两个2-port S参数,有可能组成一个4-port S参数吗?

Quick answer : No. 一个2-port S参数,内涵2x2 (4) matrix单元,即S11, S12, S21, S22,而一个4-port S参数,需内涵4x4 (16) matrix单元。所以明显的,当有两条线的两个2-port S参数,并不足以充分且唯一定义一个4-port S参数,即这两条"之间"的近端耦合与远程耦合条件并未被定义。换言之,一个4-port S参数可以简化(reduce order)分离出两个2-port S参数,但反之不然。

5、全3D模型的S参数,与分开的3D模型S参数串连的差别

常见的问题是:封装与PCB板单独抽S参数后,再于电路仿真软件串接S参数,这样的做法跟把封装与PCB直接在仿真软件中3D贴合抽S参数会有怎样的差异?

Quick answer : 封装与PCB间在Z轴上的空间耦合路径,只有把封装与PCB直接在仿真软件中3D贴合抽S参数时,才会被考虑。这样的做法当然是最准的做法,但需不需要每个案子都一定 非得这么做不可,其实取决于结构与带宽考虑。当这条路径的耦合效应影响,在您所设计的结构下,在一定带宽以上的影响不能被忽略时,就必须考虑。

6、Port阻抗的设定

Port阻抗的设定,对S参数本质上,与S参数的使用上,有没有影响?

Quick answer : 虽然renormalize不同的port阻抗,会得到不同的S参数曲线,但该N-port model所定义的物理效应本质上是相同的。所以对于model的使用,理论上没影响,但实际上 因为tool的transient analysis的数值处理能力(fitting ability)不同,有些时候有影响。

打个比方,在SIwave v4.0很早期的文件,会建议讯号的port阻抗设50ohm,而电源的port阻抗设0.1~1ohm,但目前的SIwave其实就不需要特别这么做,即你可以延续之前的设定习惯,或是全部都renormalize 50ohm,SIwave吐出的S参数代到Designer去用,都可以得到一样的结果。如果您使用其他的tool有遇到设不同的port阻抗,得到时域模拟结果不同的情况,建议您可以试试SIwave。

7、Export S参数模型时

Export S参数模型时,有没有做port renormalize to 50ohm,对使用S参数有没有影

Quick answer : No

8、问题与讨论

(1) S参数无法汇入怎么办?

Ans:首先检查tool是否反馈任何错误讯息,再来以文本编辑器打开该S参数,检查其频点描述定义是否是递增排列(frequency monotonicity)。会出现这种乌龙错误,通常是有人手动编辑去修改S参数造成。

(2) S参数因为port数过多导致模拟耗时怎么办?

Ans:遇到S参数模拟耗时,首先我会检查该S参数是否有passivity与causality issue,或是在Designer模拟过程中,注意看看是否在state-space fitting process卡很久。遇到多埠S参数,则试着转成state space model (.sss),仿真速度会加快不少,而透过SIwave或NdE转state space model的程序中,建议只勾enforce passivity,不用勾enforce causality,这样也会节省不少时间。(因为state space algorithm本身就满足primitive causality,所以不用担心其因果性问题)

“”

(3) Toushstone1.0(TS1.0)与TS2.0主要有何差别?

Ans:TS2.0 (.ts)支持mixed reference impedance,而TS1.0 (.snp)每个port的reference impedance都要是相同的50ohm. 以SIwave为例:

“”

以Designer内NdE (Network Data Explorer)为例

“”

不管原本在SIwave或HFSS的port设定是否有指定renormalize,最后要export时还可以再决定要不要overwrite renormalize

(4)0Touchstone file可以设定noise data,那是什么东西,何时使用?

Ans:这是在TS1.0就有定义的功能,可以对Touchstone file附加noise data定义,一般用于主动组件的S参数模型。

当你在Designer汇入S参数模型时,可以右键单击[Edit Model]检视noise data (如果有的话).

“”

(5)为何在2.2的例子,BGA与PCB各别S参数的loss累加(-0.29-0.8=-1.09)反而是比整个3D model一起看所得到的S参数(-1.06)来的差?

Ans:当BGA与PCB做3D结合的条件下去抽S参数时,此时原本没有参考平面的BGA上走线,会看到一些PCB上的平面透过solder ball所贡献的些微回流路径效应。这点我们也可以透过观察Z11(Z profile)来验证。

“”

本文转载自:搜狐-EDN电子技术设计
转载地址:http://www.sohu.com/a/223649843_717276
声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有,如涉及侵权,请联系小编邮箱:cathy@eetrend.com 进行处理。

围观 12

S参数测量是射频设计过程中的基本手段之一。S参数将元件描述成一个黑盒子,并被用来模拟电子元件在不同频率下的行为。在有源和无源电路设计和分析中经常会用到S参数。

S参数是RF工程师/SI工程师必须掌握的内容,业界已有多位大师写过关于S参数的文章,即便如此,在相关领域打滚多年的人, 可能还是会被一些问题困扰着。你懂S参数吗? 请继续往下看...台湾同行图文独特讲解!

基础篇

目录

简介:从时域与频域评估传输线特性

看一条线的特性:S11、S21

看两条线的相互关系:S31、S41

看不同模式的讯号成份:SDD、SCC、SCD、SDC

以史密斯图观察S参数

仿真范例

-- 地回路有没有slot对S11, S21的影响

-- 有效介电系数如何取得

问题与讨论

Reference

1、简介:从时域与频域评估传输线特性

良好的传输线,讯号从一个点传送到另一点的失真(扭曲),必须在一个可接受的程度内。而如何去衡量传输线互连对讯号的影响,可分别从时域与频域的角度观察。

“”

S参数即是频域特性的观察,其中"S"意指"Scatter",与Y或Z参数,同属双端口网络系统的参数表示。

“”

S参数是在传输线两端有终端的条件下定义出来的,一般这Zo=50奥姆,因为VNA port也是50奥姆终端。所以,reference impedance of port的定义不同时,S参数值也不同,即S参数是基于一指定的port Zo条件下所得到的。

2. 看一条线的特性:S11、S21

看一条线的特性:S11、S21

如下图所示,假设port1是讯号输入端,port2是讯号输出端

“”

S11表示在port 1量反射损失(return loss),主要是观测发送端看到多大的的讯号反射成份;值越接近0越好(越低越好 ,一般-25~-40dB),表示传递过程反射(reflection)越小,也称为输入反射系数(Input Reflection Coefficient)。

S21表示讯号从port 1传递到port 2过程的馈入损失(insertion loss),主要是观测接收端的讯号剩多少;值越接近1越好(0dB),表示传递过程损失(loss)越小,也称为顺向穿透系数(Forward Transmission Coefficient)。

3、看两条线的相互关系:S31、S41

“”

虽然没有硬性规定1、2、3、4分别要标示在线哪一端,但[Eric Bogatin大师]建议奇数端放左边,且一般表示两条线以上cross-talk交互影响时,才会用到S31。以上图为例,S31意指Near End Cross-talk (NEXT),S41意指Far End Cross-talk (FEXT).

4、看不同模式的讯号成份:SDD、SCC、SCD、SDC

以上谈的都是single ended transmission line (one or two line),接着要谈differential pair结构。

“”

“”

5、以史密斯图观察S参数

因为S11、S22是反映传输线的reflection,不难理解S11其实也可以直接以反射系数表示。

“”

既然是反射系数,那就可以用史密斯图来观察了,史密斯图可以想做是把直角坐标的Y轴上下尽头拉到X轴最右边所形成

“”

水平轴表示实数R,水平轴以上平面表示电感性,水平轴以下平面表示电容性

“”

以一条四英寸长,50欧姆的传输线为例,从15M~2GHz的史密斯图,S11会呈现螺旋状往圆心收敛,而这螺旋就是dielectric losses absorb造成,越高频loss越大。

“”

6、仿真范例

取一条100mm长,线宽7mils、铜厚0.7mils、堆栈高4mils,特性阻抗50奥姆的microstrip,以下方reference plane是否有被slot切开做比对。Trace1的地回路是完整的,而Trace2的地有一个横切的slot造成地回路不连续。

“”

6.1

观察Trace 1的S11、S21:S11从1~5GHz都维持在-35dB以下,表示反射成份很小;S21从1~5GHz都很接近0dB,表示大部分的讯号成份都完整的从port 1传到port 2。

“”

一条良好的传输线,S11、S21会拉蛮开的,随着频率增加彼此才会慢慢靠近一些 。另外,从S11可以很清楚看到由线长所决定的共振频点.

“”

一般50歐姆特性阻抗的microstrip on FR4,有效介電限數大約3.0~3.1,可以透過Design/Nexxim得到.

6.2

观察Trace 2的S11、S21:S11在1GHz以上时,就超过-20dB了,表示反射成份很大;S21与Trace1比较起来,随频率降低的速度也大一倍,表示有较多讯号成份在port 1传到port 2的过程中损耗。

“”

7.问题与讨论

7.1 埠端阻抗是如何影响S11参数的?

Ans:端口阻抗(referenced impedance, Zport)会影响Zin,进而影响S11

For the transmission line with characteristic impedance Zo, the max. impedance referenced to Zport is Zin=Zo*2/Zport ,S11=(Zin-Zport)/(Zin+Zport)

在HFSS内,上式S11中的Zport以实数考虑(non-conjugate matched load for S-parameter),而在Designer或一般电路仿真软件中,上式S11中的Zport以复数 考虑(conjugate matched load for S-parameter)。在 一些天线或waveguide的应用中,如果埠 端阻抗含虚部,而又希望可以在Designer内看到跟HFSS的S参数 同样结果,可从以下设定[Tools] [Options] [Circuit Options],un-check [Use circuit S-parameter definition]。

请注意:这只是S参数埠端定义的不同,结果 都是对的,所以不管哪一种定义下,如果转到Y或Z参数(或是从Designer透过dynamic link HFSS)去看,其值是一样的。

“”

7.2 Touchstone file (.snp)跟S-parameter是什么关系?

Ans:Touchstone file (.snp)是基于每个频点的S参数,所定义的一种频域模型,其格式如下所示:

“”

7.3 为何端口阻抗会影响S参数,但不影响Z参数(Z11)?

Ans:Z11=Vi/Iin与埠端阻抗无关。

7.4 除了靠软件,还有其他方法检查Passivity、Causality吗?

Ans:如图所示,透过观察TDRNEXTFEXT是否在T=0之前有响应。

“”

7.5 史密斯图(Smith Chart)与Causality、Passivity是否有关联性?

Ans:有的

7.5.1 满足Causality与Passivity传输线的史密斯图,会呈现以顺时针方向往中心螺旋收敛的曲线。

“”

“”

“”

“”

“”

将线长从10mm拉长一倍到20mm,发现越长的线,其Smith Chart中随频率增加而顺时针向中心旋转收敛的步幅也会增加。

把介质loss tangent从0.02改0.06,发现Smith Chart中随频率增加而顺时针向中心旋转的收敛会加快。顺时针向中心旋转与lossy有关。

7.5.2 满足Causality但a bit violate Passivity传输线的史密斯图,会出现部份频段贴合,没有往中心 旋转收敛。

“”

“”

“”

近几年的HFSS性能一直提升,想要用简单的例子搞出non-passivity还不太容易。本例是四条传输线(.s8p),故意 降低mesh performance(放大error percentage=0.1%),低频DC~0.1GHz刻意不求解,并且使用lossless介质。

7.5.3 non-causality and non-passivity的史密斯图,相对于n*n matrix中不同矩阵区块内的violate程度,曲线可能会折弯 (低频violate passivity严重,在Smith Chart也看到低频曲线有不规则的折弯),或是不往中心收敛

“”

“”

笔者还看不到HFSS产生的non-causal S参数的Smith Chart会逆时针旋转,或其时域响应提前发生的现象 。但可以用Designer内的de-embedded功能产生逆时针旋转的Smith Chart。

8、Reference

[1] Chapter1 -- 宜兰大学, 邱建文教授

[2] In-Situ De-embedding (ISD) p.6~8 from AtaiTec Corp. (推荐)

[3] Power Integrity for I/O Interfaces: With Signal Integrity/ Power Integrity

In a passive high-speed channel, the speedy way to check for causality is to examine the S-parameter Smith Chart. If the data rotate clockwise, it has positive group delay; implying it to be causal. On the other hand, if the data rotates counterclockwise, this implies it is noncausal.

[4] 一篇利用Smith Chart补偿Passivity与Causality的专利技术

Smith Chart can be used to monitor the passivity and causality of networks under study. For instance, Foster's reaction theorem dictates a general motion in the clockwise direction with frequency for the parameters of an arbitrary network.

[5] touchstone spec. 2.0

[6] TS1.0 and TS2.0 (推荐)

[7] Converting S-Parameters from 50Ω to 75Ω Impedance

[8] Scattering Parameters:Concept, Theory, and Applications

[9] RF Matching Design

[10] Why have non-causality (推荐)

本文转载自:搜狐-EDN电子技术设计
转载地址:http://www.sohu.com/a/223649843_717276
声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有,如涉及侵权,请联系小编邮箱:cathy@eetrend.com 进行处理。

围观 34

一.原理图
1. RS485接口6KV防雷电路设计方案

图1  RS485接口防雷电路
图1 RS485接口防雷电路

接口电路设计概述:

RS485用于设备与计算机或其它设备之间通讯,在产品应用中其走线多与电源、功率信号等混合在一起,存在EMC隐患。

本方案从EMC原理上,进行了相关的抑制干扰和抗敏感度的设计,从设计层次解决EMC问题。
电路EMC设计说明:

(1) 电路滤波设计要点:

L1为共模电感,共模电感能够对衰减共模干扰,对单板内部的干扰以及外部的干扰都能抑制,能提高产品的抗干扰能力,同时也能减小通过429信号线对外的辐射,共模电感阻抗选择范围为120Ω/100MHz ~2200Ω/100MHz,典型值选取1000Ω/100MHz;

C1、C2为滤波电容,给干扰提供低阻抗的回流路径,能有效减小对外的共模电流以同时对外界干扰能够滤波;电容容值选取范围为22PF~1000pF,典型值选取100pF;若信号线对金属外壳有绝缘耐压要求,那么差分线对地的两个滤波电容需要考虑耐压;

当电路上有多个节点时要考虑降低或去掉滤波电容的值。C3为接口地和数字地之间的跨接电容,典型取值为1000pF, C3容值可根据测试情况进行调整;

(2) 电路防雷设计要点:

为了达到IEC61000-4-5或GB17626.5标准,共模6KV,差摸2KV的防雷测试要求,D4为三端气体放电管组成第一级防护电路,用于抑制线路上的共模以及差模浪涌干扰,防止干扰通过信号线影响下一级电路;

气体放电管标称电压VBRW要求大于13V,峰值电流IPP要求大于等于143A;

峰值功率WPP要求大于等于1859W;

PTC1、PTC2为热敏电阻组成第二级防护电路,典型取值为10Ω/2W;

为保证气体放电管能顺利的导通,泄放大能量必须增加此电阻进行分压,确保大部分能量通过气体放电管走掉;

D1~D3为TSS管(半导体放电管)组成第三级防护电路,TSS管标称电压VBRW要求大于8V,峰值电流IPP要求大于等于143A;峰值功率WPP要求大于等于1144W;

接口电路设计备注:

如果设备为金属外壳,同时单板可以独立的划分出接口地,那么金属外壳与接口地直接电气连接,且单板地与接口地通过1000pF电容相连;

如果设备为非金属外壳,那么接口地PGND与单板数字地GND直接电气连接。

二. PCB设计

1. RS485接口电路布局

图1  RS485接口滤波及防护电路布局
图1 RS485接口滤波及防护电路布局

方案特点:

(1)防护器件及滤波器件要靠近接口位置处摆放且要求摆放紧凑整齐,按照先防护后滤波的规则,走线时要尽量避免走线曲折的情况;

(2) 共模电感与跨接电容要置于隔离带中。

方案分析:

(1)接口及接口滤波防护电路周边不能走线且不能放置高速或敏感的器件;
(2) 隔离带下面投影层要做掏空处理,禁止走线。

2. RS485接口电路分地设计

方案特点:

(1)为了抑制内部单板噪声通过RS485接口向外传导辐射,也为了增强单板对外部干扰的抗扰能力,在RS485接口处增加滤波器件进行抑制,以滤波器件位置大小为界,划分出接口地;

(2)隔离带中可以选择性的增加电容作为两者地之间的连接,电容C4、C5取值建议为1000pF,信号线上串联共模电感CM与电容滤波,并与接口地并联GDT和TVS管进行防护;且所有防护器件都靠近接口放置,共模电感CM置于隔离带内,具体布局如图示。

方案分析:

(1)当接口与单板存在相容性较差或不相容的电路时,需要在接口与单板之间进行“分地”处理,即根据不同的端口电压、电平信号和传输速率来分别设置地线。“分地”,可以防止不相容电路的回流信号的叠加,防止公共地线阻抗耦合;
(2)“分地”现象会导致回流信号跨越隔离带时阻抗变大,从而引起极大的EMC风险,因此在隔离带间通过电容来给信号提供回流路径。

本文转载自: 电子发烧友---张飞实战电子
转载地址:http://m.elecfans.com/article/633648.html
声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有,如涉及侵权,请联系小编邮箱:cathy@eetrend.com 进行处理。

围观 10

编者注:

PCB设计是每个工程师必备的设计技能之一,是电子产品设计的重要环节,一个产品的原理设计再完美,如果没有好的PCB设计,其功能和可靠性会大打折扣,甚至不能正常工作。唐晓泉博士是某上市公司CAO ,多年来,他养成了独立画PCB板的习惯,以确保产品可靠性设计,在近30年的设计中,他总结了一些经验,从“术”的角度而不是“道”的角度看待PCB设计,这是真正的“授人以渔”,希望大家可以用心体会唐博士的十条总结,我们以第一人称方式分享内容

“”

有时想想人生还真容易,从矿石,电子管开始,到今天的微信小程序,岁月如烟似云,人生就这么玩过来了。尽管我的职业身份不断变化,但玩心不变,layout,coding成了我的终身爱好,今天借电子创新网PCB交流群聊聊PCB的那些事。

1、轮回已到,风口正当时。MPU i4004的出现,就注定了摆弄元件的电子硬件逐渐走向小众化,以及软件行业的兴起,那还是在上个世纪70年代初。随着PC和手机的平台化,特别是在2010年以后智能手机平台终归IOS和Android二大阵营,全世界就那么几十,最多不超过千人的核心硬件工程师支撑起了全球的PC和手机的硬件设计,而原本与软件不分伯仲的硬件工程师轮陷到鄙视链的最低端,甚至硬件工程师都不好意思说自己是从事IT的。

当资本与技术绑定吞噬掉以PC和手机为代表的人机交互市场后,集中巨额资本开始向以物与物交互为代表的物联网市场进攻,这场战争也有差不多打了10来年了,总的来说败多胜少。究其原因,“碎片化的应用场景”就是最好的答案,而应对“碎片化场景”的最好方法是组识集硬件与软件开发一体的全栈小团队。目前那种软硬件全球分工,动辄数千人,甚至上万的软件工厂即使在技术上能完美解决“碎片化场景”,但在商业模式上是行不通的。历史又将硬件工程师推向风口。

2、硬件决定产品的成败,PCB设计是龙头,是基石。这个问题很显然,但是在软件占主导地位的今天,却被大多数人忽视了。因为现在软件行业的硬件平台都由INTEL,APPLE类似的全球顶尖公司设计,并由富士康类似全球顶尖的公司制造,因此无论是设计质量还是制造质量都是最好的,无需为硬件操心。而对于一个集软硬件开发一体的全栈团队,硬件将是决定团队的成败、产品推出速度、资金流以及利润的必要条件。多年来,我从Smartwork(应该是国内最早的用计算机设计PCB的软件)开始一直到现在,几乎每个月要完成一块从schematic到PCB的layout(估计和许多项目负责人写的文档数量差不多),其目的就用schematic和PCB来描述自己的思想,把自己从那没完没了的讨论中解脱出来,从而有更多的时间享受生活。

3、坚实的理论基础是PCB工程师高效工作,快乐生活的源泉。理论与实际相分离,甚至于用经验代替理论,从专业角度讲,过多的经验这将导致专业的轮落;从人生角度讲,过多的经验会导致一个人的心胸越来越窄;从生活角度讲, 过多的经验会占用人生最宝贵的时间,对职业产生厌倦。

理论是事物本质的抽象,掌握并能灵活应用理论,就能以不变应万变。画了几十年PCB,几乎遍历了中外有关PCB设计的书籍和资料,但令人遗憾的是这些书籍和资料都是以经验规则为主。整那么多碎片化的,规律性很差的经验规则摆在那里,硬是活生生把一项集创造和艺术一体的设计工作搞成死气沉沉的八股。满桌子的元件,满板子的线线,而且还动动就申明:“老子在调电路,莫惹老子哦”这几乎是众多硬件工程师的真实写照。

嗨,画个PCB不就是解决电波的传输,无论是以路为代表的欧姆定律和以场为代表的有限元都是再成熟不过的理论了,为什么非要搞得如此,真是人生一大悲剧。

4、layout的策略由路与场的决定的。什么是路?什么是场?这个在高中大学的相关课程中讲得很清楚了,在这里我就不再重复,但我要更正一下很多教科书的一个不好的说法:路是用来分析低频电路,场是用来分析高频电路。这一说法直接导致读者用错路与场。我认为更适当的说法是:当信号的传输距离和信号的波长相比拟时就应该考虙使用场,否则就用路。什么是相比拟?大约是在2000年吧,我做过这方面的研究,也就是说当信号的传输距离接近信号波长的十分之一时,将开始出现场的现象;传输距离接近信号波长的四分之一时,必需用场来分析。

场在layout上如何应用?就是要避开波的折射、绕射和反射。折射和反射就是PCB的常见的SI问题,而绕射就是PCB上的铜箔太窄,信号过不去,它通常发生在地和电源层中。把折射、绕射和反射的原理记住,再用这些原理去解释一些PCB书籍和资料上规则,并画几次板子,再好悟悟,幸福的日子就在眼前。

5、如果用参考平面的来称地和电源,那么layout会更容易理解应用。信号的传输必需要有电位差,如果没有参考点,就不存在电位差;没有电位差,信号就没有办法传输。如果参考点不稳,信号的流向就不确定,那么麻烦事就大了。什么叫参考平面?参考平面就是容量很大的一个等电位体,当外界向其注入一定的能量时,参考平面上的各点的电位仍然能保持相同。

如果一块PCB上参考平面质量很好,也就是说电源和地的质量很好,那么困扰layout的信号回流,模拟地与数字地,还有接地点就可以淡化。现在低功耗技术的意味着对PCB参考平面的冲击能量很小,而多层PCB能确保参考平面电位的稳定性,这样layout就简单多了。所以现在有些工程师问我,在layout时,不分模拟地和数字地了,也不考虑信号回流了,就几层地,效果有时比认真考虑模拟地和数字地,考虑信号回流还好,就是这个道理。

群中有位同行说,他在layout时,电源,信号都安排完了,最后考虑地,我可以负责地说:这是有问题的。

6、群中有位同行拿了一块5.8G的板子,问如何layout天线。5.8G的1/10波长大约在4mm,4mm比一棵0805电阻还要长点,从图中看IC的天线输出到匹配网络之间的距离不到一棵0603电阻的长度,同时匹配网络到天线IPEX之间的距离也不到一棵0603电阻的长度,我认为尽管信号频率高达5.8G,可以不考虑阻抗匹配问题。该同行也说了这块板子好几个人同时layout,尽管每个人layout都不一样,但测试结果相差甚微。因为IC位置,IPEX的位置是定了的,这样IC到IPEX之间的距离变化不大,当然效果不会相差太大。

同时我认为如果天线与IC的阻抗相匹配,完全不需匹配网络。因为解决问题的最好的方法就是降维,少一个元件就少一个维度,当然作为匹配网络的二端元件也就是通过桥接的方式降维。

7、如何降低板子的二次谐波?首先二次谐波超标可能是相关有源电路出现了非线性,比如放大器的工作点不对、幅度过大等。如果有源电路出了问题,靠简单的滤波器会很麻烦,因为滤波器的带宽越窄,其阶数就越高。滤波器阶数高,零极点分布复杂,系统容易不稳定。

8、关于多层板的问题。我经常遇到一些很牛的PCB工程师,他们张口六层板,闭口八层板,好像layout的水平与PCB的层数成正比。我首先肯定PCB的层数越多,越容易构造构稳定的参考平面,因此电路的性能越好。但是同时也意味着在达到相同的性能下,PCB的层数越多,成本越高,交付期越长,资金流转越慢。所以我个人认为,在完成相同的任务下,PCB工程师的竞争力与PCB的层数成反比。

9、PCB设计工具的选择和体会。目前比较通用的工具主要有Cadence、ALLEGRO和Altium。我认为每种工具能在存在下来,肯定有它特定用户群,因此工具本身不应该分优劣,主要是看您的应用场景。如果您所在的团队不涉及到IC和SIP之类的,还是选择Altium;如果您的团队涉及到IC和SIP之类的,或者与IC团队耦合紧密,那选什么工具您得听IC团队的。

10、在全栈团队中,PCB工程师的职业定位。由于PCB是硬件、软件和制造的联接点,因此一个格的PCB工程师它必需能胜任硬件、软件和制造等工作的协调工作。

作者唐晓泉历

“”

自1982年进入泸州化工学校化工仪表及其自动化专业学习,爱好就与职业重合了,然后分别在西安矿业学院,西安交通大学,清华大学,微软亚洲研究院完成了漫长的求学经历;期间在成都红旗橡胶厂作仪表维修,在四川工业学院从事教学工作。在学业彻底完成以后,最初在中国科学院作研究工作,然后是创业,团队被兼并,现任苏州万龙电气集团股份公司董事,CAO.

伙伴们看到这认为就完了?精彩的还在后头~

请注意:彩蛋来啦!
贸泽送新年福利啦!!!

活动参与方式

1、扫描二维码进入到【工程师的一天】H5页面。:

“”

2、转发H5页面到朋友圈分享。

3、然后截图发送到公众号后台既可参与我们的抽奖活动。

“”      “”

4、我们将从中抽取20名的幸运小伙伴,并给予精美大礼品一份。(名额有限,先到先得!)

小伙伴们,你还在等什么?快快行动吧!

“”

该发布文章为独家原创文章,转载请注明来源。对于未经许可的复制和不符合要求的转载我们将保留依法追究法律责任的权利。

围观 92

摘要:灯具设计需要针对过电流保护设计安全断开的小尺寸保险丝,本文介绍了室内LED灯具保护电路设计的相关要求及设计人员需要考虑的问题。

引言

最初设计的室内LED灯具,设计人员面临着各种各样的技术挑战。这些瓶颈包括交直流逆变电路的功率转换、热功耗考虑/散热、当前灯泡尺寸的物理空间限制、瞬态电气脉冲,这些都是除了驱动LED发光的基本电路设计之外的技术瓶颈。

这些挑战中最重要的一个是针对LED颗粒以及其上游电路中的所有主被动元件提供瞬态脉冲保护。这些瞬态脉冲通常是交流输入电路中的雷击感应浪涌。这些浪涌意味着LED灯具需要过流及过压保护。

01、LED灯具结构

对LED灯具的功能及高亮度的需求增长意味着驱动电路板上的器件越来越多。大功率LED驱动形成高亮度输出,同时会产生大量的热功耗,这意味着需要更大的散热片。因为LED灯具旨在与现有的白炽灯和CFL灯具(如通常用于家用照明的主流A19灯具)在封装形式上兼容,都包含有一条交流/直流变换的电源驱动电路,因此可以在标准灯具插座上使用(图1)。

由于灯具内的元件和(或者)电路故障引起的短路或过载现象,都可能导致直接连接在交流电源中的任何元器件损坏。此外,雷击感应浪涌或开关机脉冲(灯具外部产生)产生的尖峰电压或振铃波会对灯具内部的元件造成压力并最终造成元件损坏。

一只LED灯具包括图2中所示的基本电路模块,其中从右到左依次为:

  • 多晶片及单晶片LED颗粒采用串联连接配置,称之为LED灯串。多个串联LED灯串并联并由同一个电源驱动。

  • 具有相应保护电路的LED灯串驱动电路中,包括串联在回路中的针对过流保护(OCP)的正温度系数(PTC)电阻和并联在回路中的用于过压保护(OVP)的 TVS 二极管。

  • DC-DC电源转换电路中,包括在输入端上针对下游元件的次级过压保护的并联TVS 二极管。

  • 交流整流电路中,包括在输出端上针对下游元件次级过流保护的串联高压直流保险丝。

  • EMI 滤波元件。

  • 交流输入电路中,由火线(L)上的串联交流保险丝和火线(L)—零线(N)间并联的MOV组成。

02、LED灯具的电路保护

“”

交流输入电路中,交流保险丝是灯具的主要过电流保护器件。如果针对所有必要的设计参数进行正确选择,当由于感应瞬变和短路/过载所导致的过度电性应力(EOS)产生时,这种保险丝通过将所有电路与交流输入安全地断开,充分保护所有下游元件免受损坏。

鉴于与LED灯具设计相关的空间限制,针对交流输入选择一个紧凑型的交流保险丝是至关重要的。保险丝的功能是在电流过载情况下可靠且可预测的熔断来为元件和完整的电路提供保护。

换句话说,保险丝是电路中的薄弱环节。串联在交流线路输入端的交流保险丝能提供短路和过载保护。如今,交流保险丝具有广泛的额定电流与额定电压范围,可应用于最小的结构中。还有一系列其他的关键保险丝参数和可表面贴装的设计供使用,使设计工程师能够选择出满足所有应用要求的保险丝。

具有足够的I2T额定值的交流保险丝是通过按照IEEEC.62.41标准要求的能源之星振铃测试所必需的器件。标称的热熔值I2T(单位:安培平方秒,A2sec)规定了熔断保险丝熔丝所需的能量大小。

通常,根据标称热熔值I2T选择的保险丝适用于保险丝必须承受较短持续时间的大电流脉冲的应用。LED照明应用的浪涌抗扰度测试需要符合8×20μs的组合波形。即使其标称热熔值I2T超过了波形能量的热熔值,不同的保险丝结构对浪涌事件也不会有相同的反应方式。例如,电力浪涌脉冲产生热循环,可以使保险丝产生机械疲劳从而缩短其寿命。

LED照明灯具的交流输入端的压敏电阻(MOV)是初级过压保护器件。如果针对所有必要的设计参数进行正确选择,它将可以通过钳制短时电压脉冲,保护所有下游元件免受因感应瞬变和环波效应所导致的电应力(EOS)的损坏。

当由于感应瞬变和短时嵌位电压脉冲产生的振铃导致的过度电性应力(EOS)发生时,MOV保护所有下游元件免受损坏。MOV提供了一种最大程度降低瞬变能量的高性价比的方案,防止其可能会进入下游元件。正确的 MOV器件选型要以诸多电气参数为基础,包括额定电压、峰值脉冲电流、能量等级、圆盘尺寸和引脚方式。

03、设计LED照明灯具需要考虑的问题

LED照明灯具的设计人员需要考虑各种重要的问题,针对交流输入电路选择合适的交流保险丝:

  • 第一步是找到关于应用的一些技术问题的答案。在过去,理解和回答这些技术问题,然后通过元件规格书搜索针对某种应用选择合适的保险丝,这是一项非常令人困惑和耗时的工作。这些问题包括灯具的正常工作电流、工作电压、环境温度、过载电流水平和保险丝熔断需要的时间、最大允许故障电流以及脉冲、浪涌电流、瞬间热插拔脉冲、启动电流和电路瞬变等。

  • Littelfuse 还提供一种以《保险丝选型指南》为基础的强大的在线选型工具 - iDesign保险丝选型指南。它旨在帮助电路设计人员为它们的项目确定最佳的电子保险丝。iDesign工具提供了一种快速、直观的方法来确定适合应用的最佳元件,找出元件的说明文档,并订购元件样品以进行原型设计。它通过保险丝选型步骤,根据所提供的输入信息快速缩小可选范围,帮助设计人员选择到合适的保险丝。

  • 在初始设计时,知道灯具将要出售的市场是至关重要的。根据灯具是否在美国、北美的其他地方,欧洲、亚洲或其他区域使用,设计和测试必须要满足不同的标准。

“图2
图2 具有脉冲和浪涌保护器件的典型LED驱动器电路
  • 确定可能影响可使用的保险丝的尺寸限制。保险丝可以使用多种方法进行封装,但表面贴装设计是LED照明应用中最常见的封装形式。幸运的是,对于电路设计人员来说,现在可以使用更小尺寸的保险丝来保护交流输入,其中一些的尺寸只有以前可用的最小保险丝的一半。

  • 电流流过保险丝产生的温度随着环境温度的变化而增加或减少。请注意,保险丝的“环境温度”并非正如其名,等同于“室温”。相反,环境温度是保险丝周围空气的温度,通常远高于室温,因为保险丝可能会被封装在(例如在保险丝座中)或安装在LED板的发热部件附近。对于25摄氏度的环境温度,通常建议保险丝的工作电流不超过额定电流的75%。保险丝本质上是温度敏感的器件,所以当保险丝100%满载到额定值时,即使很小的温度变化也可能会极大地影响保险丝的预期寿命。

  • 确定应用所需的分断能力。分断能力也可能被称为熔断额定值或短路额定值(I2T值)。这是保险丝在额定电压条件下可以安全熔断的最大许可电流。在故障或短路状态下,保险丝可能承受一个远高于正常工作电流的瞬间过载电流。断开意味着完好无损(无爆炸或本体破裂)并切断电路。

  • 确保在生产之前有足够的时间进行全面的应用测试和验证。如果初始设计没有通过其中任何一项测试,请确保在计划中有足够的余地来修改设计并重新测试。

  • 最后,设计人员必须将保险丝与下游过压保护器件和LED灯串驱动电路配合好。在LED灯具设计过程之初,必须考虑到瞬态抑制。保险丝的选型必须要能满足规格定义的能量冲击,避免LED灯串驱动电路受到不利影响。交流输入电路上的保险丝和MOV,如果选型合适,当出现瞬态脉冲时,无需保险丝断开就能实现过压钳位保护、安全地保护下游电路,同时最大程度降低了对LED灯串驱动电路(包括LED灯串本身)的损伤。

  • 然而,也有特定的LED照明灯具工作电路无法承受瞬态脉冲冲击。在这些情况下,正如在前面关于DC-DC转换器模块的内容中所指出的,添加一个用于过压保护的辅助次级TVS二极管是一种经过验证方案,可进一步钳制MOV的“残压”能量。在最极端的情况下,甚至还有一个额外的过流保护器件(如图2的中部所示,交流整流模块中的高压直流保险丝)和LED灯串中的过流保护器件(与LED灯串串联的PTC)、过压保护(与LED灯串并联的TVS二极管)以及LED开路保护(与LED晶粒并联的单个PLED),以提供更强劲的电路保护。

  • 保险丝与过压保护和LED驱动器的搭配。

  • 瞬态电压抑制必须是初始设计过程的一部分;所选择的的器件必须能够减少瞬态脉冲能量,抑制住脉冲电压,从而使驱动电路不受影响。

  • TVS二极管是最常用的一种抑制器件。TVS二极管专门设计用于保护电子电路,防止瞬态过电压。作为一种硅半导体雪崩器件,它既有单向也有双向。在单向TVS,特定的钳位特性只在一个方向上表现出来,在另一个方向上显示出的是类似于传统的整流器二极管的正向导通电压(VF)特性。LED照明电源(驱动器)通常在其电路中一个或多个位置上需要安装TVS二极管。

  • 瞬态脉冲的破坏潜力是由其峰值电压、持续电流和脉冲宽度所决定的。当用于保护诸如驱动IC和LED晶粒等敏感元件时,瞬态抑制器的响应时间极为重要。如果瞬态抑制器响应速度慢,当系统上出现了快速上升的瞬态尖峰时,在抑制器开始动作前,通过被保护负载的尖峰电压就已上升并起到破环作用

在选择TVS二极管时,必须考虑以下几个重要的参数:

  • 反向截止电压(VR)。其中最重要的参数是VR,其必须等于或大于被保护电路(或电路的一部分)的峰值工作电压。确保TVS在正常驱动电压下不会动作。

  • 峰值脉冲电流(IPP)。IPP是TVS所能承受的最大安全脉冲电流,通常以诸如10×1000μs的指数波形为参照表示。Ipp仅表示瞬态峰值电压除以源阻抗的值。

  • 最大钳位电压(VC)。VC是基于参照的指数波形,在脉冲峰值电流(IPP)流过TVS 器件时,TVS 两端出现的峰值电压。

  • TVS二极管中的故障机制是短路。因此,如果TVS二极管因瞬态脉冲而出现故障,其所在的电路依然会受到保护。

04、结论

在LED 灯具设计初期阶段就有完善的电路保护,并投入所需的时间和资源的设计人员将会收获成功的产品和更好的用户体验。由于交流保险丝、交流MOV和TVS二极管等元件的最新进展,到新一代设计人员诞生之前,下一代LED灯具就可能到来。

本文转载自:力特奥维斯Littelfuse
转载地址:http://mp.weixin.qq.com/s/WkmE8Oa2W_yxrI_pZrKDbw
声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有,如涉及侵权,请联系小编邮箱:cathy@eetrend.com 进行处理。

围观 45

应用实例(1):

一种简单的三段式铅酸电池充电器控制电路

“”

一种简单的三段式铅酸电池充电器控制电路

“”

“”

本PCB文件是由上图原理(没有继电器电路)设计的12V/4A简单的三段式充电器。

“”

应用实例(2)

简单的单颗TL431限流恒压控制方法

“”

●当电流增大时TL431-1的电位被太高,从而起到现在电流的功能,因为R3的存在对输出电压进行了补偿.所以基本上可以做到限流稳压功能为一体, 具有相对的成本优势.

应用实例(3)
一种低压氙气灯电源启动电路

“”

●此电路是一个限制输出功率的半桥电路,利用电容限制电流的方法。(调节VR2可以得到不同的启动电压值,调节VR1可以得到不同的输出电流来匹配不同的低压氙气灯的搭配).

●输出两个绕组,第一个是能够提供27V30A的主绕组,第二个是能够提供140V启动电压,经过串联在整流二极管前面的电容来限制启动机电流<0.5A电流的。当开机时输出电压根据辅助绕组的反馈电压,开环状态启动绕组电压被限制到140V左右,氙气灯在高达140V电压立即启动后,由于高压绕组的串联电容存在,这个电流无法高起来。而一旦氙气灯启动,此电压被迫同步拉低到主绕组电压27V左右,因为前端互感器电流采样使得输出功率受限制,所以27V的电压不会被抬高。

●因为串联电容限制电流达到同步启动的方法使得电路必须工作在固定频率下,而输入电压范围也不能偏差太高。一般在5%范围内变化不会影响氙气灯的正常工作。

●此电路的特点就是有效解决同步启动的问题,实现自然同步比软件控制更为可靠。

●氙气灯的启动特点就是要求必须完全同步,如果电压低就无法启动。但一旦启动后电流就必须在电流上来的同时电压要降低到24V-28V,过高就会出现灯管爆炸的危险,电流低于25A就会熄灭。而熄灭后不能立即重新启动。应用这一方法得以有效且低成本的满足要求。

应用实例(4)

一种波形比较理想的变压器隔离驱动电路

“”

波形比较理想的变压器隔离驱动应用实例

“”

应用实例(5)

偏小变压器反激开关电源设计之参考建议本案例是EC-2828变压器全电压输入,输出功率60W。

“”

EC-2828变压器全电压输入,输出功率60W。

“”

●对于偏小磁芯变压器的设计:主要有磁芯Ae面积偏小的问题,将会带来初级圈数偏多的现象。可以适当提高工作频率,本案例工作频率在70KHz-75KHz。由于圈数偏多初次级的耦合将会更有利。所以VCC绕组电压在短路瞬间会上冲到比较高的状态,本案例原理图上有可控硅做过压保护功能。而后因为次级绕组的短路耦合到VCC绕组使其电压降低到IC不能启动这个过程是可以实现的。

●要做到以上特性:VCC绕组线径必须要小,我个人一般取0.17mm以下,小于0.12会很容易断。这样小的线径谈不上节约铜材,但是可以利用铜线的阻抗来代替很多设计人员习惯在VCC整流二极管上串联小阻值电阻的功能,而且这个利用线圈本身的阻抗对交流的抑制能力在本案例当中更有效,可以防止瞬间冲击而损坏后级电路的功效。

●初级与次级主绕组必须是最近相邻的绕组,这样耦合会更有利。

●开关电源在MOSFET-D端点工作时候产生的干扰是最大的(也是RCD吸收端与变压器相连的端点),在变压器绕制时建议将他绕在变压器的第一个绕组,并作为起点端,让他藏在变压器最里层,这样后面绕组铜线的屏蔽是有较好抑制干扰效果的。

●VCC绕组在计算其圈数时尽量的在IC最低工作电压乘以1.1倍作为误差值,不用考虑铜线的压降,因为启动前电流是非常小的,所以这个电阻并没有多少影响,几乎可以忽略不计。而在电路未启动之前,由于高压端启动电阻的充电,可以将VCC上电容上的电压充到IC启动的电压,一旦电路有问题一下启动不了VCC由于绕组电压的预设值偏低。电路也是不会启动的,一般表现为嗝状态。

●为何要按照IC的工作电压低端取值?因为我们次级绕组是与初级绕组相邻绕制的,耦合效果相对而言是最好的。我们做短路试验也是做次级的输出短路,因为耦合效果好,次级短路时VCC在经过短暂的上冲后会快速降低,降到IC的关闭电压时电路得到最好的保护。需要注意这个电压需要高于MOSFET饱和导通1V以上,避免驱动不足。

●还有利于降低IC本身的功耗,是否可以提高IC的寿命无法验证,但稳定性应该更高。

应用实例(6)

一种反激双路输出相对稳定的解决方案

“”

具有相对稳定输出的双路反激输出电路

“”

●这种电路一般应用于小功率电源。为了确保两个绕组的交叉调整率更好。我们需要注意一些问题。

●在本实例中,一般我们设5V为采样反馈端.如果双路采样交叉调整率可能会更差,甚至不能单独空载和独立带载问题.此方法得以解决这一问题,此方法不太适合两组电压相差遥远的应用.会多占用变压器一脚.

●反馈光耦供电用12V供电,且取样点在后级滤波电感前面更好。因为滤波电感前的波动更快的反映前端PWM的调制状态,就算TL431的开启程度是一定的,因为12V的波动可以让光耦上反馈到的电流有微小的差异,在反馈环路一定的情况下,这个光耦供电取样点的选择更有利于动态响应和调整率的平衡控制。

●12V绕组应该放在更接近于初级绕组的地方。这样更有效的确保12V的电压变化比例更小,因为我们反馈采样的是5V端,所以难控制的是12V的绕组。综合这些将可以更好的控制这两个绕组的平衡度。虽然不能做到绝对的好,但是相对的来说是有一定参考价值的。

●上页所述的样板基本可以控制到+/-5%范围的误差,属于可接受的范围,建议喜欢动手的朋友不妨试一下。

应用实例(7)

应用于功放的正负输出电源欠压式短路电压保护控制电路

“”

说明:功放电源正负双输出电压保护

●由Q1构成正电压欠压式短路保护电路
●当正电压短路时,电压降低于稳压二极管加在Q1驱动分压电阻分压后让Q1导通,即可送出保护信号。
●由Q2构成负电压欠压式短路保护电路
●当负电压短路时,电压升高至串联于Q2基极上稳压二极管,使Q2截止时,Q2集电极上的电压信号经过D2即可送出保护信号。
●Q3是作为保护的指示灯驱动电路。
●这个电路在实际应用中需要做到对供电的VCC在正负电压从开机到启动正常这段过程的延时,否则开机时就有保护信号,导致无法正常开机。如果需要锁死可以用输出保护信号驱动一个由三极管构成的可控硅锁死电路来实现。

“”

具有正负双输出电压保护的功放电源PCB

“”

应用实例(8)

用LM358实现LED输出端限流稳压PWM调光控制

“”

●此例应用是将PWM信号直接加在电流采样信号上,通过调节PWM的宽度来调制过电流保护信号的时间,而起到调节限制电流的功能的。

●需要注意的事情是PWM需要倒相输入,就是说占空比越小的时候LED上施加的电流越大。占空比越大时LED电流越小。

应用实例(9)

一款带带功率因数补偿的50W LED驱动电路

“”

带功率因数补偿的50W LED驱动PCB

“”

文章来源:百度文库
作者:刘旭明

围观 51

页面