专注于新产品引入 (NPI) 与推动创新的领先分销商贸泽电子 (Mouser Electronics) 宣布与Espressif Systems签订全球分销协议,此后贸泽将授权分销Espressif基于ESP8266和ESP32的低成本通用型低功耗无线片上系统 (SoC)、模组和开发板,为物联网 (IoT) 应用提供支持。

“”

贸泽电子备货的Espressif产品解决方案包含种类齐全的创新型多功能解决方案,能为各种无线应用提供低成本无线连接。Espressif的ESP8266EX、ESP8285和ESP8089 Wi-Fi SoC为基于低功耗32位Tensilica微控制器的高集成度Wi-Fi解决方案,它们在紧凑的5x5 mm QFN封装中集成了天线开关、功率放大器和其他元件。这些单芯片解决方案具有系统级电源管理功能,以及SPI、SDIO 2.0和UART 接口,此外ESP8266EX和ESP8089 SoC还具有I2C、I2S、PWM和GPIO接口。

ESP32 SoC是自成体系的2.4 GHz Wi-Fi和蓝牙®组合芯片,适用于移动和可穿戴设备以及物联网应用。此系列芯片采用搭载两个Xtensa LX6 CPU的双核系统架构,并集成了无线电和天线切换电路,功耗超低。ESP32-DOWDQ6和ESP32-DOWD SoC具有520 KB SRAM、448KB ROM,其实时时钟还内置了16KB SRAM。ESP32-D2WD的功能与ESP32-D0W相同,但增加了一个2MB的嵌入式片上闪存。

Espressif单核Wi-Fi模组全部经过预认证,降低了开发成本,能加快产品上市。ESP-WROOM-02和ESP-WROOM-S2具有嵌入式ESP8266EX芯片和2MB闪存。ESP-WROOM-S2可作为SDIO/SPI从器件工作,且SPI传输速率高达8 Mbps。

Espressif双核Wi-Fi与蓝牙低能耗模组为高性能、低功耗器件,专门用于为领先的IoT应用提供完整的无线解决方案。ESP-WROOM-32和ESP32-WROVER模组基于ESP32-D0WDQ6 SoC ,并包含4 MB闪存。ESP32-WROVER(带PCB天线)和ESP32-WROVER-I(带IPEX天线)增加了4MB外部伪静态随机存储器 (PSRAM),可支持音频产品及其他应用。

贸泽同时还备有Espressif丰富多样的开发板ESP-WROVER-KIT是Espressif功能最丰富的开发板,兼容ESP32模组,并拥有丰富的功能,包括板载高速microSD卡接口、VGA摄像头接口、32英寸SPILCD面板和I/O扩展能力。ESP32-DevKitC已预安装了集成Wi-Fi、经典蓝牙和低功耗蓝牙的ESP-WROOM-32模组,并优化了引脚布局以便在面包板上安装此板,便于进行原型开发。ESP-Launcher是通过Micro USB供电的开发板,支持所有32引脚ESP8266 SoC,工程师可利用此板开发基于ESP-WROOM-32模组和ESP32 SoC的解决方案。

更多详情,敬请访问www.mouser.com/espressif

贸泽电子拥有丰富的产品线与卓越的客服,通过提供采用先进技术的最新产品来满足设计工程师与采购人员的创新需求。我们库存有全球最广泛的最新半导体及电子元件,为客户的最新设计项目提供支持。Mouser网站Mouser.cn不仅有多种高级搜索工具可帮助用户快速了解产品库存情况,而且网站还在持续更新以不断优化用户体验。此外,Mouser网站还提供数据手册、供应商特定参考设计、应用笔记、技术设计信息和工程用工具等丰富的资料供用户参考。

关于贸泽电子 (Mouser Electronics)

贸泽电子隶属于伯克希尔哈撒韦集团 (Berkshire Hathaway) 公司旗下,是一家屡获殊荣的一流授权半导体和电子元器件分销商,专门致力于以最快的方式,向设计工程师和采购人员提供业界顶尖制造商的最新产品。作为一家全球分销商,我们的网站mouser.cn能够提供多语言和多货币交易支持,分销来自超过700家生产商的500多万种产品。我们通过遍布全球的22个客户支持中心为客户提供一流的服务,并通过位于美国德州达拉斯南部,拥有最先进技术的7万平方米仓库向全球170个国家/地区,超过60万家客户出货。更多信息,敬请访问:http://www.mouser.cn

关于Espressif Systems

Espressif Systems是一家领先的专业IC设计公司,致力于为物联网 (IoT) 应用提供低功耗Wi-Fi和蓝牙技术的SoC与无线解决方案。Espressif的创新团队成员来自于世界各地,专注于芯片设计、算法研究、软件开发、产品开发与客户服务。

围观 5

作者:Scott Jones,Maxim Integrated嵌入式安全部门执行总监

2016年的网络犯罪损失上升24%,超过13.3亿美元,并且这仅仅是美国联邦调查局(FBI)网络犯罪投诉中心跟踪的网络犯罪。关于黑客和其他安全漏洞的新闻头条也屡见不鲜。然而,许多产品制造商仍然将设计安全作为亡羊补牢之举。其中一部分原因可能是误认为实施安全性在时间和资源方面都代价昂贵。本文纠正这些误解并介绍最新的整体式、高成效嵌入式安全,后者为防止入侵提供强有力的保护。

设计安全为什么仍然被忽视?

去年,电信巨头Telefonica在发布的一份报告中警告说,由于防御网络犯罪的措施仍然落后于物联网(IoT)方案的发展,带来了灾难性后果。

“这不仅仅涉及到数据隐私,或者数字身份的安全。在接下来的几年中,我们的生活将被连接到互联网的设备所包围,这些设备将我们执行的每一步都数字化、将我们的日常活动转化为信息、通过网络分发,并根据这些信息与我们互动。我们的实际生活从来没有如此接近数字世界。”该公司在报告中表示:“范围、规模和风险前所未有:保护物联网。”

然而,安全漏洞仍然有增无减。信用报告巨头Equifax今年夏天发生了大规模数据泄露,黑客获取了美国居民的姓名、社会保障号码、生日、地址及部分信用卡号码,以及英国和加拿大居民的个人数据。今年春天,大规模的勒索软件攻击事件对欧洲、南美洲、亚洲和北美洲的至少150个国家的计算机产生了影响,导致医院、大学、制造商、企业和政府机构出现问题。2016年秋季,由于遭受到基于Mirai恶意软件的僵尸网络攻击,CCTV视频摄像机和DVR造成大面积断网事件。对于每一次广为人知的重大事故,都有许多较小的事件令消费者和企业担心。不言而喻,随着越来越多的产品和系统接入网络,黑客的技术变得越来越高,每个垂直行业都存在亟待解决的风险。例如,请考虑一下以下场景:

工业:从之前的孤立系统向现在全部联网的系统过渡,使设备容易受到远程攻击。
医疗健康:该行业存在敏感数据相关的隐私问题、数据完整性问题,以及医疗设备/装置的认证操作。
银行:随着网络银行成指数级增长,机构不再能现场保证身份真实性,风险大大提高。
零售:移动设备采用开放式架构,但其功能又相当于金融/支付终端,所以必须确保交易和通信安全。
通信:端对端安全是防止各种攻击的必要条件。
汽车:还记得2015年Jeep汽车被白帽黑客远程控制的事件吗?汽车将很快成为轮子上的计算机,其受攻击风险仍然非常高。

忽视设计安全的风险是巨大的:收入损失、品牌声誉损失,甚至人身伤害。发生破坏之后的亡羊补牢之举往往效果小且见效晚。事实告诉我们,越在设计的早期阶段构建安全性,效果越好。基于硬件的安全已被证明比基于软件的相应措施更有效(关于基于硬件与基于软件的设计安全的比较,请参考白皮书:“为何基于硬件的设计安全性对于所有应用程序都至关重要”)。值得庆幸的是,采用安全IC的硬件方法并不一定需要太多的人力、资源或时间。

上述安全性的代价

虽然您可能面临产品快速上市且要求开发成本足够低的巨大压力,但您认真考虑过破坏造成的相关成本吗?如表1所示的假想终端产品,上述的安全问题最终会带来更多的费用。

基于硬件的安全在一定程度上提供了可靠性,因为网络犯罪分子难以更改设计的物理层。此外,物理层的存在使得恶意软件不可能渗透操作系统并潜入设计的虚拟层。从设计周期之初开始,即可将安全性整合到设计的底层以及后续所有层。

利用安全IC,例如从内部、不可变存储器中执行代码的微控制器,防止试图破坏电气器件硬件的攻击。微控制器的ROM储存被认为是“信任根”的启动代码,因为代码不可修改。因此,这种“不可更改”、受信任的软件可用于验证和认证应用软件的签名。利用从底层就基于硬件的“信任根”方法,可将设计的更多潜在进入点关闭。

“表1.
表1. 假冒伪劣带来的资产损失最终远远超出实施安全性所需的成本。

安全微控制器和安全认证器等嵌入式安全IC提供整体方案,保护从每个传感器节点到云端的整个系统。然而,并非所有安全IC都是相同的。例如,由于成本、功耗以及要求复杂的固件开发,有些安全微控制器就不适合IoT设备或端点。于是出现了一些加密控制器能够实施嵌入式、联网产品的完全安全性,且无需任何固件开发工作,例如,Maxim的MAXQ1061 DeepCover®器件。作为协处理器应用于初始设计,或者整合到已有设计,保证数据保密性、身份真实性和设备完整性。

对于安全认证器,器件应提供一组核心的固定功能加密操作、密钥存储以及其它适合IoT和端点安全的相关功能。凭借这些能力,安全认证器即可保护IP、防止克隆以及对外设、IoT设备和端点进行安全认证。

在评估嵌入式安全技术时,还应该考虑哪些因素?内置加密引擎和安全引导加载程序的安全微控制器,可有效防止密码分析攻击、物理篡改和反向工程化等威胁。Design SHIFT是一家总部位于美国加利福尼亚州门洛帕克市的数字安全和消费产品工程公司,其ORWL安全台式计算机需要此类特性。该公司设计ORWL时,要求安全认证和防止物理攻击两种功能,需要强壮的信任根安全。Design SHIFT找到了所需的方案:MAX32550 DeepCover ARM® Cortex®-M3安全微控制器。

“许多软件人员说,一旦您失去对硬件的控制,您就玩完了”。Design SHIFT公司的CEO Olivier Boireau表示:“建立信任根是强壮保护的保证。”

通过物理不可复制特性(PUF)技术增强保护

我们开始在安全IC中看到一项更高级的加密技术,即物理不可复制特性(PUF)。PUF依赖于IC器件的复杂且可变的物理/电学特性。由于PUF在制造过程中产生的随机物理因素(不可预测、不受控),实际上不可能复制或克隆。集成PUF技术的IC带有与生俱来的数字指纹,可用作唯一的密钥/密码,支持提供安全认证、识别、防伪、硬件-软件绑定以及加密/解密的算法。

Maxim的PUF电路依赖于基本MOSFET器件模拟特性来产生密钥,而器件的模拟特性是自然随机发生的;该方案被称为ChipDNA™技术。这种专利方法可确保PUF电路产生的唯一二进制数值,在随温度和电压变化以及器件老化的情况下保持不变。高水平的安全性在于该唯一的二进制数值实际上未储存在非易失存储器芯片的任何位置,而是需要时由PUF电路生成,使用后立即消失。因此,与之前的安全器件容易遭受对非易失存储器的侵入式物理攻击从而获取密钥不同,基于PUF的器件不容易受到这种类型的攻击,因为本来就无密钥可偷。此外,如果基于PUF的器件遭受侵入式物理攻击,攻击本身会造成PUF电路的特性发生变化,进一步阻碍这种类型的攻击。ChipDNA PUF技术已证明其在生产工艺、电压、温度和老化方面的优异可靠性。此外,对基于NIST的随机性测试结果的PUF输出评估已经成功完成,结果合格。图1所示为ChipDNA PUF技术的不同用途:内部存储器加密、外部存储器加密和安全认证密钥生成。

第一款采用PUF技术的安全认证器

Maxim第一款采用ChipDNA PUF技术的安全IC为DS28E38安全认证器,设计用于提供高成效的入侵式物理攻击防御。DS28E38提供:

基于FIPS186 ECDSA的质询/响应安全认证
ChipDNA安全存储数据,可选的ECDSA-P256私钥数据源
2Kb EEPROM阵列,用于用户存储器和公钥证书
带认证读取的仅递减计数器

“图1.
图1. ChipDNA PUF技术的不同用途

本文转载自:美信半导体
转载地址:https://mp.weixin.qq.com/s/PRvzmfiZgJnLoOvRIsN8Vw
声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有,如涉及侵权,请联系小编邮箱:cathy@eetrend.com 进行处理。

围观 3

专注于新产品引入 (NPI) 并提供极丰富产品类型的业界顶级半导体和电子元件分销商贸泽电子 (Mouser Electronics) 即日起备货ON SemiconductorRSL10 多协议片上系统 (SoC)。此款通过蓝牙® 5认证的多功能SoC支持低功耗蓝牙技术以及2.4 GHz 专属或定制协议栈,能为各种应用提供超低功耗无线连接。

“”

贸泽电子供应的ON Semiconductor RSL10 SoC搭载48 MHz Arm® Cortex®-M3处理器,其中的32位双哈佛 (Harvard) DSP内核支持无线音频通信所需的音频编解码器。此器件同时具有闪存和RAM,通过多样化存储架构来存储蓝牙协议栈和其他应用。

高度集成的RSL10 SoC包含DMA控制器、振荡器和超高效率的电源管理单元。此款SoC适合采用1.2V和1.5V电池的应用,无需外部DC/DC 转换器即可支持1.1V至3.6 V的供电电压。

此SoC具有配套的RSL10评估板,通过此评估板的标准0.1英寸接头连接所有输入和输出。另外,此评估板还内置通信接口电路和J-Link解决方案,使用户能够通过USB/PC连接对评估板进行调试。

ON Semiconductor的RSL10 SoC用于为物联网 (IoT) 装置和高性能可穿戴设备提供超低功耗的连接,广泛支持各种医疗应用,包括健身追踪器、助听器、心率监测器、血糖仪和脉搏血氧仪。

有关详情,敬请访问www.mouser.com/onsemi-rsl10

贸泽电子拥有丰富的产品线与卓越的客服,通过提供采用先进技术的最新产品来满足设计工程师与采购人员的创新需求。我们库存有全球最广泛的最新半导体及电子元件,为客户的最新设计项目提供支持。Mouser网站Mouser.cn不仅有多种高级搜索工具可帮助用户快速了解产品库存情况,而且网站还在持续更新以不断优化用户体验。此外,Mouser网站还提供数据手册、供应商特定参考设计、应用笔记、技术设计信息和工程用工具等丰富的资料供用户参考。

关于贸泽电子 (Mouser Electronics)
贸泽电子隶属于伯克希尔哈撒韦集团 (Berkshire Hathaway) 公司旗下,是一家屡获殊荣的一流授权半导体和电子元器件分销商,专门致力于以最快的方式,向设计工程师和采购人员提供业界顶尖制造商的最新产品。作为一家全球分销商,我们的网站mouser.cn能够提供多语言和多货币交易支持,分销来自超过700家生产商的400多万种产品。我们通过遍布全球的22个客户支持中心为客户提供一流的服务,并通过位于美国德州达拉斯南部,拥有最先进技术的7万平方米仓库向全球170个国家/地区,超过55万家客户出货。更多信息,敬请访问:http://www.mouser.cn

关于ON Semiconductor
ON Semiconductor是顶尖半导体解决方案供应商,为环保型电子产品提供高性能、节能型半导体解决方案,其全面的产品组合包括电源和信号管理、逻辑、分立元件及定制元件等。该公司的产品能够帮助客户高效解决各类独特的设计挑战,广泛应用于汽车、通信、计算、消费型产品、工业、LED照明、医疗、军事/航空和电源等领域。

围观 4

在激增的高质量传感器、可靠连接和数据分析的共同推动下,工业效率迈上了新的台阶,而不断提高这些智能节点的自动化和移动化程度也能带来好处。在这些情况下,对传感器节点进行精密运动捕捉和位置跟踪成为事关应用成败的核心。这样,智能农场就可以基于丰富的地理位置、传感器内容以及分析学习结果来联合利用自动化地面车辆和航空器更加有效地指导地面作业。智能手术室将经典的导引技术带到手术台上,供精密制导机械臂使用,其运用传感器融合技术来确保各种条件下的精准导引。在多个领域,基于运动的传感器成为移动应用的价值倍增器。

手机中普遍存在的消费类惯性传感器使人们对其精度普遍感到失望,因此,在推动运动物联网(IoMT)的概念方面,迄今都没有什么成效。然而,新型高性能工业传感器能支持精确的角度指向和精确的地理定位性能,同时还能达到必要的尺寸和成本效率要求,故而现在又做好了推动运动物联网发展的准备。

工业系统智能检测的推动因素

工业机械和流程最具价值的进步集中在有形的系统级优势上,而这通常会带来设计和实现方面的挑战,这些挑战又会发展成新的问题解决方案和业务模式。这种系统级推动因素可以归纳为三项追求,即对资源效率、关键精度和更高安全性的追求。瞄准这些横跨多个行业的改进的应用,包括跨越空中/地面/海上、室内/室外、短期/长期和人/机等,但无论如何,它们都依赖于共同的属性;即精度、可靠性、安全性和智能处理与分析,如表1所示。

表1. 运动物联网应用重要的系统属性转变成极具挑战性的设计需求

“”

多种类型的传感器成为目标应用设计任务的核心。目标设计涉及的系统复杂性要求基于广泛变化的条件下慎重考虑传感器质量和鲁棒性。虽然有些行业有可能出于方便考虑而选择传感器(比如,利用手机上已经存在的传感器组合),但其他行业则会重新设计传感器组合,根据精度做出选择,将传感器智能地结合起来,以全面、可靠地覆盖目标系统状态。

智能检测

在传感器大量存在的背景下,这些已面世的智能型系统正在一些所谓的成熟行业掀起革命,把农业变成智能农业,把基础设施变成智能基础设施,把城市变成智能城市。由于传感器被部署在这些环境中以收集相关的情境信息,数据库管理和通信方面出现了新的挑战,不仅要求传感器之间的数据融合,而且要求实现跨平台、跨时间的复杂融合(例如:对跨时间的基础设施状况、前一年的农作物产量、交通状况及模式等进行基于云计算的分析),如图1所示。

“图1.
图1. 新兴工作需求将情境和运动检测与多层融合结合起来。

从设备和环境中可靠地抽取哪些信息的决定成为这些新兴应用最终效用和发展前景的主要度量指标。精度驱动效率,进而转变成必要的经济因素,同时也是确保安全、可靠运行的关键。虽然多数基础传感器可以添加简单的功能,但添加的这些简单功能却无法满足目标运动物联网应用的需求,在这类应用中,是/否、上/下、开/关等状态会被更精细的分辨率代替,添加的功能会影响传感器的选择。

运动的重要之处

多数情况下,物联网都处于运动状态。即使不处于运动状态——比如,静止的工业安全摄像头——精密指向仍可能必不可少,或者,关于无用运动(篡改)的知识也可能非常有价值。如果能在恶劣的飞行条件下维持精确的指向角度,用光学载荷捕捉作物图像的无人机就有可能更快地带来更好的结果;如果能为光学数据提供准确的地理测绘信息,则有可能实现对数据和趋势的历史比较。智能交通工具,无论是地面交通工具,还是空中或海上交通工具,它们都越来越依赖GPS导航。然而,GPS遭受的精度压力也越来越大,无论是有意为之,还是自然使然(建筑物、树木、隧道等)。如果选择时考虑了精度需求,则额外的传感器仍然可以在事故中断期间可靠地进行航向角推算。表2列出了使IoMT(运动物联网)中的M(运动)概念名符其实的一些因素,注意运动与通用应用之间的关系。

表2. 运动知识、甚至运动知识的缺乏都事关多种应用的成败

“”

如果有机会和手段捕捉设备或人的自然惯性,抽取的系统状态意义就会得到增强,并且可能与可用的情境信息适当地融合起来,如表3所示。

表3. 位置检测是物联网的价值倍增器

“”

可靠、安全的运动物联网节点

运动物联网节点输出的有效性和价值最为依赖的是核心传感器的质量以及它们高保真地捕捉应用情境的能力。因此,融合处理是传感器校正/增强的必然选择,也是理想捕捉传感器间状态动态的必备条件(例如,在任意给定时间点,哪个传感器最可靠)。应用级的处理以分层方式融入解决方案之中,并根据环境特点进行优化,包括适当的边界条件。虽然这种方式是自动的,但在有些情况下,这些节点会协同工作,比如在地面或空中成群的无人驾驶交通工具中。在这些情况下会部署安全链路,强调可靠传输和受保护的特有身份信息,如图2所示。

“图2.
图2. 综合情境和位置信息的互联安全传感器。

传感器是自动化的核心

就如人体一样,自动运动物联网节点依赖检测多个输入来实现需要的感知能力,从而独立行动并根据随机、甚至乱序事件优化其结果,最终随时间改进。如表4所示,从基本测量到控制、再到自动化的过渡会提高传感器融合层的复杂性以及嵌入式设备计算的复杂性。由于这些节点也会取得很高的互联能力和自适应性学习能力,所以他们可能走向人机融合。

表4.以高质量传感器为基础,日益提升的集成度和智能程度推动自动化和人机融合

“”

没有基础设施的定位

GPS无处不在,除非卫星信号被阻挡或中断。在可用的条件下,无线测距技术可能非常精确。如果未受干扰,始终都有磁场读数。惯性具有独有的自恃性。显然,惯性MEMS传感器有自身的不足(漂移),但这些不足都在可控范围以内,采用小尺寸经济型封装的新型工业惯性测量装置(IMU)具有前所未有的稳定性。

惯性MEMS器件采用标准半导体工艺、复杂封装和集成模式,通常以线性加速度(g)或角速度(°/秒,或速率)为单位,直接检测、测量和解读其运动,如图3所示。由于除要求最温和的应用以外,所有其他应用都拥有所谓的多自由度(实际上指,可以在任何所有轴上运动,且所有设备在其运动中都相互不受限),这就必须捕捉x、y和z各轴的加速度和角速度值;或者在有些情况下,称为翻滚轴、俯仰轴和偏航轴。综合起来,这些有时被称为六自由度惯性测量单元。

“图3.
图3. 用于确定精密运动的微机电结构。

虽然经济上的考量自然会促使MEMS设计师用最少的硅片面积在各个轴上(x、y、z)抽取这些多个检测类型(加速度、角速度),但仍然需要采取更加平衡的性能设计视角,以满足更具挑战性的工业检测需求。事实上,有些MEMS结构在尝试用单个MEMS模块测量所有6种模式。在考察这种方式对于高性能检测的有效性之前,我们必须知道,MEMS器件需要捕捉一些运动,这非常重要,但同样重要的是,同一器件还要能够放弃会变成误差的其他形式的运动(或者不受其影响)。例如,虽然陀螺仪测量角速率,但它同样应该能做到忽略角速率测量上的加速度或重力效应。对一个简单的MEMS器件来说,如果试图以小小的结构测量一切,自然(在设计上)会非常容易受到这些其他干扰误差源的影响,并且无法把有用运动与无用运动区分开来。最终,这些误差源会变成导航或应用中的噪声和误差。

运动物联网要兑现必要时提高资源效率、增加安全或关键精度的承诺,就需要比当今移动设备中无处不在的简单传感器具有更高的精度。着眼于性能的设计模式就变成了为每种检测模式和每个检测轴独立设计的模式,但其目的是走向融合和集成。最后,必须知道的是,为性能设计并不一定意味着不能为经济考量而设计。

功能或性能

有些应用可以通过添加功能(设备的手势/方向模式切换)获得极大的价值,用简单的MEMS器件就能相对容易地获得这些信息。工业或专业器件可能更容易测量不同方位的精度与亚度间的差值,或者能以优于一个数量级以上的精度分辨位置,同时还能在高振动环境里工作。低端传感器与高端传感器之间的性能差异并不小,事实上,二者的差异非常大,在选择组件时有必要慎重考虑。

最终应用将决定所需的精度水平,而所选的传感器质量将决定其能否实现。表5选择了两种解决方案进行比较,说明了传感器选择对设计过程和设备精度均很重要。如果只在很有限的情况下依赖传感器,并且应用有较高的容错性,那么可以使用低精度传感器——换言之,如果不是安全或生命攸关的应用,相对较低的精度便足够了。虽然多数消费级传感器在有利条件下噪声很低且性能良好,但它们不适合用于动态运动(包括振动)下的机器,因为性能较低的惯性测量单元无法将动态运动与简单的线性加速度或所需的倾斜测量区分开来。在工业环境中工作时,为实现优于1度的精度,应当选择专门设计的传感器,以便抑制振动或温度影响导致的误差漂移。这种高精度传感器能够支持更大范围的预期应用状态,工作时间也更长。

表5.推动精度和效用的是传感器的质量而非传感器融合的复杂性

“”

精密仪器设计师最感兴趣的一般是惯性测量装置(IMU),这类装置输出的是经校准的加速度和速率而非运动角度或距离,因为这种系统级的信息高度依赖于具体应用,因而是系统设计师而非惯性传感器设计师的工作重点。结果导致的问题,举例来说,是从惯性传感器规格表中分辨指向精度。

表6展示的是一款中端工业器件的规格,同时还用手机中常见的消费级传感器进行了比较。请注意,也有更高端的工业器件可用,其精度比表中所示器件要高一个数量级。多数低端消费级器件未提供诸如线性加速度效应、振动校正、角度随机游走之类的参数规格,而这些规格在工业应用中恰恰可能是最大的误差源。

表6.工业MEMS器件对所有已知潜在误差源进行全面测定,通常能实现消费类器件高出一个数量级或更高的精度水平

“”

这款工业传感器样品设计用于预期会有相对迅速或极端运动(2000°/s、40 g)的场景,宽带宽传感器输出对最佳地辨别信号也很关键。工作期间的失调漂移(运动中稳定度)应最小,以降低对更多补充传感器(用来校正性能)的依赖。在某些情况下,应用无法为后端系统滤波校正提供所需的时间,此时必须使开机漂移(可重复性)最小化。低噪声加速度计同陀螺仪一起使用,以帮助区别并校正任何关于加速度的漂移。

陀螺仪传感器设计可用来直接消除任何加速度g事件(振动、冲击、加速度、重力)对器件失调的影响,可大幅改善线性加速度;通过校准,温漂和对准均得以校正。若不进行对准校正,典型多轴MEMS器件即使集成到单片结构中,也可能有较大对准误差,使其成为误差计算的主要贡献因素。

近年来,噪声在区分传感器级别上所起的作用有所降低。在超出简单判定或相对静止运动确定的应用中,线性加速度效应和对准误差之类的参数成为噪声源,通过芯片设计方法或器件专用校准来改善它们需要付出高昂的成本。

传感器融合能补救劣质传感器吗?

答案很简单,不能。传感器融合是一个滤波和算法处理的过程,它将相对于环境、运动动态信息和应用状态对传感器组合进行合并或管理。传感器融合可以提供确定性的校正(如温度补偿),并会基于系统状态知识,管理从一个传感器到另一个传感器的切换过程,但无法弥补传感器内在的缺陷。

在传感器融合设计中,最关键的任务是首先要深入挖掘应用状态知识,为设计流程的剩余环节提供支撑和动力。针对给定的应用选择适当的传感器时,应先进行详细分析,了解其在总体任务的不同阶段中的权重(相关性)。在行人导航定位推算示例中,解决方案主要取决于可用的设备(如智能手机中的嵌入式传感器),而不是通过性能设计。因此,会严重依赖GPS以及其他可用的传感器,例如嵌入惯性和磁性传感器,仅为确定有用的位置信息发挥一小部分作用。它在室外能够正常工作,但在具有挑战性的城市环境或室内,GPS就不准确了,其他可用传感器的质量很差,存在较大差距,换言之,位置信息的质量具有不确定性。尽管先进的滤波器和算法通常用来融合这些传感器的数据,无需任何额外传感器或质量更好的传感器,软 件对于弥补不确定性差距的作用不大,最终只是大大降低了报 告位置的信心。图4中为概念性说明。

“图4.
图4. 应用级精度取决于传感器质量而非传感器融合复杂性。

与其形成鲜明对比的是,工业导航定位推算方案是针对系统性能定义而设计的,要根据具体精度要求选择组件。更高质量的惯性传感器允许其发挥主要作用,适当利用其他传感器来缩小不确定性差距。比起推算/估算可靠的传感器读数间的位置,算法在概念上更关注最佳权重、切换和传感器互补,以及对于环境和实时运动动力学的认识。

精度在任何一种情况下都可以通过选择质量更高的传感器来提高,虽然传感器滤波和算法是解决方案的重要一部分,但它们本身并不能消除低质传感器覆盖范围的差距。

新型工业传感器的性能已经接近以前用于导弹制导的传感器的水平。这些新型工业传感器采用最初针对可靠和精密汽车应用设计并以经济型工艺制成的架构,在性能-成本比和性能-尺寸比方面具有独特的优势,如图5所示。

“图5.
图5. 工业级6自由度IMU ADIS1647x和ADIS1646x,在复杂和动态环境中也能提供高精度水平。

精密运动检测不再是小众应用的专属,其他应用也别无选择,只得投资采购昂贵的跟踪解决方案。随着迷你型IMU工业级精密传感器的上市,物联网设计师现在可以通过整合优质运动检测功能和嵌入式情境检测功能,成倍提高其产品的价值。

作者

Bob Scannell 是ADI公司惯性MEMS产品的业务开发经理。他在ADI公司工作已超过15年,先后从事传感器、数字信号处理、无线产品的各种技术营销和业务开发工作。之前他曾在Rockwell International公司从事设计和市场方面的工作。他拥有美国加州大学电气工程学士学位和美国南加州大学计算机工程硕士学位。

本文转载自:亚德诺半导体
转载地址:http://www.analog.com/cn/technical-articles/high-perf-inertial-sensors-p...
声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有,如涉及侵权,请联系小编进行处理。

围观 3

“剖析物联网的要求—第一部分”中介绍了先进的工艺技术、低功耗设计技术、多核系统的功耗问题、多核间的通讯、串行存储器接口以及系统安全。第二部分, 我们将介绍 BLE 无线链路、模拟前端、智能触摸界面以及其他重要的物联网设计技术。

无线连接技术的发展

基于物联网的设备连接仍处于起步阶段。这意味着,随着新应用的涌现,对系统微控制器(MCU)在速度、功耗、范围和容量方面会有新的需求。该领域的潜在商机打破了在设计方面的局限性。蓝牙技术联盟最新(特殊利益集团)宣布,蓝牙5.0标准定位于电子产业对物联网市场需求的典型布局。

内容指出,全新的 BLE 标准可提供两倍的传输速度、四倍的传输范围以及广播包的数据承载量是上一个版本的8倍。这些新的技术特性将极大地促进物联网设备与我们日常生活间的各种连接。MCU作为物联网设备的核心,必须与时俱进,紧跟协议的发展进程,支持新标准提供的各种特性。以下是即将推出的最新BLE标准的主要特性。

  • 速度(传输更快):蓝牙5.0传输速度上限为2Mbps,是之前4.2版本的两倍。

  • 传输距离(通信距离更远):有效工作距离可达300米,是旧版本的4倍之多。

  • 低功耗(延长电池/设备工作时间):协议优化大大降低了电源消耗,提升了其性能。

  • 广播能力(更大的承载量):协议优化将提升800%增长的数据广播包的承载量。

  • 安全功能:高安全加密及认证,确保只允许经受权用户跟踪设备位置和安全配对。

扩充处理器容量、内存及功耗方面的性能不会凭空而来。对于许多应用程序而言,底层硬件(例如MCU)需要做出相应调整以适应这些特性。因此,生产商在设计下一代MCU时必须时刻紧记这些要求。例如,赛普拉斯 PSoC 6 BLE MCU(见图1)为物联网设计人员提供BLE 5.0所具备的这些功能。

“图1:PSoC
图1:PSoC 6 BLE子系统框图

尽管这些特点会增加MCU的负载,但也能为终端用户带来诸多好处:

  • 性能(范围优势):相比于基于物联网的其他协议,如Wi-Fi及ZigBee,BLE已经成为无线通信协议的首选。改进过的覆盖范围将确保蓝牙设备(如扬声器、智能门锁、灯泡等)可以在家里任意位置实现完全连接。这是真正实现智能家居的关键一步。BLE5.0也有可能取代高功耗的Wi-Fi,控制智能家居设备。改进后的覆盖范围还能让智能手表等设备更方便地接收来自智能手机的即时通知。

  • 低功耗(速度优势):更快的转输速度提高了响应能力。对于那些非数据密集型物联网设备来说,更快的速度意味着会带来更低的消耗及更长的使用寿命。例如,将传输速度增加两倍,发送/接收时间减少近一半。这样就可以减少功耗,因为设备可以迅速进入低功耗模式。此外,更高的传输速度支持周期性的设备软件更新,这将是物联网应用的一个重要功能。

  • 无线连接服务(广播容量优势):广播容量的显著增加将使信息传输更加丰富和智能化,Beacon等无线连接服务将能够传输更多的信息。举例来说,Beacon可以传输实际内容,而不是通过URL指向内容。这可能将重新定义蓝牙设备传播信息的方式,因为它通过无需连接的物联网传输信息,而非蓝牙配对设备模式。这有可能让资产跟踪和智能垃圾管理等先进的应用更加智能地使用网状网络。

智能触摸界面

正如第一部分中所讲到的,物联网设备跨越消费类、工业、汽车和商业应用领域。这些应用都能受惠于美观的的用户界面,且具备产品差异化,如触摸显示屏、按钮/滑块以及接近式感应。

为了让用户享受最佳体验,触摸显示器还需支持手势识别、防水、手腕感应及戴手套触摸。这些特征都可以通过低功耗的电容感应技术实现,除此以外,触摸感应还可以帮助优化功耗,例如使用接近式感应来检测用户何时使用设备。将电容感应集成在 MCU 中则无需单独的专用传感设备,此外,此项集成还可以提升功效、性能并且降低成本(参见图2)。

“图2:集成BLE连接与电容式触摸感应的PSoC
图2:集成BLE连接与电容式触摸感应的PSoC 6

电容感应是实现创新应用和提高产品特色的关键技术:

智能家居开关——个人远程控制家用设备可以为生活带来带来许多好处,智能家电也是如此。支持智能家电需要两个关键的构建模块:一、无线连接,用于将设备连接到云端;二、可以由多个源头控制的智能开关,如云端、遥控、智能手机及/或用户自身输入指令。

“图3:电容感应的智能开关”
图3:电容感应的智能开关

带有电容感应的智能开关可以实现许多高级功能:

1. 智能调光─电容感应滑块为调光功能提供了一个直观的物理接口。BLE使调光器具备无线连接功能,方便其放置在房屋内的任意位置。

2. 存储功能─MCU可以保存其内部存储中选择的亮度设置,并在电源中断或后续使用时恢复设置。

3. 安全性─智能开关的高压交流部分与继电器是隔离的,用户实体操作界面部分只用于处理低功率DC,从而保证用户安全。

4. 照明功能─MCU可以在开关上提供LED照明,以便用户在黑暗中找到开关。这一特性可以使用基于电容的接近式感应来启动。

5. 手势功能─智能开关具有检测近距离和触摸手势的能力,可轻松快速实现配置以运行特定任务。

6. 控制功能─支持基于物联网的MCU与电容式感应的开发生态系统,简化了对开关的管理,并兼容多个来源控制。

人体检测——基于电容式感应技术,可以在特定的范围内探测到包括人体在内的任何导电物质(由于质量的存在)。电容式感应技术丰富了物联网(IoT)设备的功能特性趣味化。

例如,出于安全性和低功耗因素考虑,可穿戴设备需要能够检测出设备是否被使用者配带在手腕上。其工作原理非常简单。当用户佩戴设备时,电容式传感器就会检测到手腕上的手环进而触发锁定装置,防止他人偷窥到其中的重要数据。同理,当用户没有佩戴设备时,则会进入低功耗运作模式。这些设计有助于延长电池寿命,同时,这也是任何可穿戴产品所需要考虑的重要因素。

“图
图 4:电容式感应手腕检测功能

电容式触摸滑块——滑块是一种重要的用户输入机制,可帮助用户轻松地与物联网产品相互作用。相较于大屏幕设备而言,此功能特别适用于小型可穿戴式设备。考虑到这个屏幕可能很小,当用户手指覆盖在屏幕上时,难以观看和更改参数或导航菜单。电容滑动模块使用户只需轻轻一扫就可以在不同的菜单/屏幕之间滑动。相同的滑块电极可以被用作点电容式触摸按钮,用于输入数据或选择菜单项。下图显示了电容式触摸滑块的体现形式。

“图
图 5:电容式触摸滑块

电容式触摸显示屏——触摸显示屏为中型及大型的物联网设备提供丰富的用户界面。从微波炉到手持式医疗设备,从智能手表到工业控制器等等。通常,使用电容触摸技术结合显示屏上透明的铟锡氧化物层(ITO)来实现触摸显示屏。依据这种应用方式,电容式触控技术要求能够在潮湿的环境下工作。

“图6:电容式触摸显示屏”
图6:电容式触摸显示屏

基于手势的轻薄用户界面——特殊的手势在提高用户体验方面发挥着关键作用。不同的手势功能可帮助物联网制造商区分其产品在市场上的地位。例如,一款无线蓝牙扬声器可直接通过不同的手势来控制音量、上下曲等。手势功能已逐渐成为用户界面最简单直观的形式之一。智能手势包括:向左右任意方向滑动、单击、双击、长按键等等。设备可以由指定的用户手势"唤醒”,因此手势功能不仅可以简化UI,而且还能够降低功耗。

“图7:电容式触控
图7:电容式触控 /手势接近

物联网传感器和接口

物联网应用通常是由传感器、安全处理器和无线链路组成。传感器是物联网应用的关键技术。人类通过感官与外部环境进行交流。传感器可以加强人们与其周围环境的互动。

“图
图 8:集成 BLE连接的PSoC 6及电容式触控模块

物联网应用程序普遍含有一个或多个传感器。这些传感器主要分为数字传感器和传统的模拟传感器。模拟传感器连续不间断的输出模拟信号,如电流或电压。通过传感器的量程获得所对应的测量值。市面上有多种模拟传感器,包括环境光传感器、温度传感器、声音传感器和紫外线传感器等。

相比之下,数字传感器是通过数据的数字化转换和传输的传感器。通过数字传感器将被测量值直接从模拟信号转换为数字输出。在许多应用中,数字传感器正逐步取代模拟传感器。数字数据通过电缆或其他媒介传输,将不会产生传输损耗。常用的数字传感器包括加速度传感器、压力传感器、磁力计和GPS等。

无论模拟传感器还是数字传感器,都需要通过一个接口电路将数据传递到基于物联网的MCU上。信号调节电路用来处理/提高模拟传感器的信号输出。这些电路通常被称为模拟前端(AFE)。

AFE包含一个偏置电路、一个放大器、多个比较器、一个数模转换器(DAC)、多个模拟多路转换器、多个参考电压、一个用于抑制噪音的滤波网络、偏移消除等错误抑制技术以及一个用于数字化和处理传感器数据的模数转换器(ADC)。相反,数字传感器只需要一个数字化的通信渠道,需要使用一个通用异步收发传输器(UART)、集成电路总线(I2C)、 串行外设接口(SPI)或SPI通信端口将其输出传送到MCU。

将传感器与传统的微控制器连接起来,需要在芯片外构建接口电路,尽管某些设备可能已经将一个固定的ADC集成到了MCU中。对于物联网应用而言,最理想的莫过于实现完整的模拟和数字组件与高度集成的MCU相结合。

“图9:PSoC
图9:PSoC 6 BLE AFE及DFE

模拟前端在物联网中的用例

让我们以心率监视仪( HRM)为例,了解一下物联网应用对于模拟前端( AFE)都有哪些需求。当HRM工作时,要求模拟信号调节电路以便其正常运作。测量心率有多种方法,最常用的三种是:

  • 光学体积描技术( PPG)

  •  心电图( ECG)

  •  心音图( PCG)

光学体积描技术(PPG):一种测量心血管脉冲波形的光学方法。通过人体动脉血流量的周期性脉动引致脉冲波。该测量方法需要使用一种光源和一个光电二极管(接收器)实现。通过红外线LED光源照射到皮肤上的光线可以检测到压力脉冲所引起的体积变化,然后测量出传送或者反射到光电二极管上的光的总量。图10显示了PPG测量方法的AFE电路。

“图
图 10: PSoC 6 BLE AFE示例──光学体积描技术(PPG)

心电图(ECG):当心脏经过去极化和复极化,会产生电流并扩散到整个身体。通过在人体皮肤上的特定点放置电极来检测这些电脉冲。心电图(ECG)通过探测到的这些不同的心电脉冲,来追踪心脏的整体跳动节律。由于心脏肌肉的跳动作用和被感应到的身体点之间的间距,这些电信号介于0.1mV至1.5mV。两个间距的输入点间的电势差别被运算放大器放大。信号由ADC采样模拟数据转换,集成的ADC采样用于引导补偿电流进入放大器的反馈回路。通过切断采样间的电路模拟部分的电池供电单位以节省耗电量。

“图11:PSoC
图11:PSoC 6 BLE AFE示例──心电图(ECG)

心音图(PCG):心脏瓣膜在打开和关闭时会产生收缩和扩张的声音,通常可以通过听诊器听到。传声器用来采集心跳,以及根据采集到信号来测量心率。这些声音都显示为有节奏的心率跳动。这种声学特性在心音描记仪中来确定心率。对来自传声器的电信号进行放大,并通过噪声滤波器消除外部噪声。使用数字滤波器从ADC数据中过滤出杂音和有节奏的声音,从而可以正确的计算出心率。

“图12:PSoC
图12:PSoC 6 BLE AFE示例──心音图(PCG)

开发人员在设计物联网设备时很多选择。通过了解基于物联网MCU的各种功能,选择集成处理器,可简化设计、提高性能、显著提升产品功效,并且降低整个系统的成本。此外,开发人员可实现创新应用,使设备更具备易用性,从而领先于市场内的其他产品。

相关阅读:
剖析物联网的需求——第一部分

本文转载自: Cypress
转载地址:http://mp.weixin.qq.com/s/BV8RJW5Hz6ZqqeSmPseT8g
声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有,如涉及侵权,请联系小编进行处理。

围观 14

随着科学技术的发展和人们生活水平的提高,人们越来越注重自己生活环境的舒适、安全与便利。近年来兴起的智能家居系统顺应人们的这种需求,行业也逐渐发展扩大。智能家居的未来发展会是什么样?

小编将从技术和市场两个角度分析2018年智能家居发展趋势。

据2月份发布的《中国智能家居设备行业前瞻与投资策略规划报告》推测,未来几年我国智能家居将迎来爆发期,年增长率将保持在50%左右。2018年,我国智能家居市场规模或将达到1396亿元。

随着科学技术的发展和人们生活水平的提高,人们越来越注重自己生活环境的舒适、安全与便利。近年来兴起的智能家居系统顺应人们的这种需求,行业也逐渐发展扩大。

从技术角度看智能家居未来趋势

智能家居技术并不是靠什么尖端技术堆积而成的产物,而是对网络技术、通讯技术及自动化控制技术等的结合和应用。对技术、功能、操作、外观的过度追求只会适得其反,令产品也不容易普及。毕竟功能复杂、操作困难的智能化产品会让用户觉得繁琐和有负担。

智能家居的未来发展会是什么样?根据业内人士表示,智能家居最终的目的是让主人更多的思考,让智能家居系统更多按照主人的生活方式来服务主人;创造一个更舒适,更健康,更环保,更节能,更智慧的科技居住环境。如果要具体地讲,从技术的角度来讲,未来的智能家居将朝以下几个方向发展:

1、未来5年触摸控制,将成为智能家居普及型的控制方式,通过一个智能触摸控制屏实现对家庭内部为灯光,电器,窗帘,安防,监控,门禁等智能控制,这是必配的。

2、智能手机,将成为未来智能家居相对重要的移动式智能控制终端,通过手机的智能家居客户端软件或WEB方式,实现对家庭内部的远程监控与控制,实现对家里远程开锁,客人图像确认,远程开启空调以及暖器设备。这将成为每个人必需的移动控制方式。

3、无线与有线控制系统,将会无缝结合,干线区域采用布线控制系统,小区域采用无线控制系统,这将是未来智能家居控制系统与技术的发展方向。

从市场的角度来看未来趋势

从目前市场发展来看,IPv6通讯协议、5G通信即将推广,网络传输和响应速度越来越快,万物互联时代正来临。

1、智能家居将成为家庭版的物联网,实现家庭内部所有物体的相互通讯将是智能家居未来发展方向。

2、智能家居系统将于智慧国家智能系统,智能城市系统,智能楼宇与智能小区,实现无缝联接,所有的智能家居系统,都必然会兼容与以上大系统的无缝控制联动。

3、除了北上广深等一线大城市市场外,智能家居市场渠道拓展逐渐扩张至二三四线中小城市,甚至国外市场。

小结

物联网产业外部环境趋势变好,行业发展进入快速增长期。目前,物联网相关技术不断取得进步,部署成本不断下降,中国移动正围绕物联网,立足“云管端”,拓展智能连接、开放平台、芯片模组、智能硬件、解决方案五大核心领域的能力。业内人士指出,物联网正加速进入“跨界融合、集成创新和规模化发展”新阶段,物联网规模化商用或将由智能家居打开缺口。而借助物联网的优势,智能家居未来发展或将迎来爆发。

本文转载自: 重庆IOT
转载地址:http://mp.weixin.qq.com/s/mgNq1bYsKtXZdcaeeJkaKA
声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有,如涉及侵权,请联系小编进行处理。

围观 3

想要在物联网(IoT)市场占据一席之地,原始设备制造商(OEM)必须加快创新的步伐。物联网的应用让一切变得无限可能,成功的企业会敦促其开发人员不断拓展和采取新的、更实用的方法来发挥传感器的功能,监测不同类型的数据,掌控整个设备的生态系统。

物联网应用覆盖广泛,包括可穿戴设备、汽车、住宅、工业、乃至城市等众多领域。这些应用需要更加高效节能的、创新的、安全的体系作为支持。应用程序十分重要,旨在实现软件开发的直观性和易用性。

微控制器(MCU)作为物联网产品的核心,选择合适的 MCU 是满足客户当前和未来需求的关键。本文将探讨当今不断增强的嵌入式 MCU 的丰富功能,MCU 在加速设计的同时还可实现创新应用。在第一部分,我们会介绍到先进的工艺技术、低功耗设计技术、多核系统的功耗问题、多核间的通讯、串行存储器接口以及系统安全性。

物联网市场(增长最快的引擎)

物联网技术不断改变我们的日常工作和生活方式,使我们的生活更加经济、便捷、舒适和智能化。物联网市场可以大致分为两大类:消费型物联网和企业物联网。

消费型物联网包括住宅、生活方式、健康和出行。个人用户可以通过这些物联网设备产品提高其生产力、安全性和生活质量。从智能住宅到联网汽车,消费者市场正在为下一波浪潮做好准备。

“”
图1:消费型物联网市场细分

企业物联网的覆盖范围巨大,包括零售、医疗、能源、出行、城市、制造业和公共服务。企业物联网细分市场会改变组织和社区,从而创造一个实现经济增长的新时代。物联网通过连接数据、人员和机器来提高生产力、生产效率以及日常运营水平。企业物联网也可以作为帮助企业识别未开发领域新增长机会的工具。

“”
图2:企业物联网市场细分

工艺技术(尺寸十分重要)

制造 MCU 的工艺技术对于其本身的性能、低功耗和成本而言至关重要。物联网应用需要高效的有源功耗和低功耗模式消耗来提高系统的整体功效。随着制造技术的不断进步,促使硅核心面积不断缩小。同一块硅片上可以制造出更多的 MCU,从而降低了芯片的整体成本,性能和功耗也因此直接受到影响。尺寸的缩小减少了开启/关闭每个晶体管所需的电流,同时保证了时钟频率不变。因此,更小的芯片意味着具备更高的的最大时钟频率,可以在较低的功耗下实现更高的性能。

例如,用于制造赛普拉斯半导体 PSoC 6 BLE 系列MCU 的 40 纳米工艺技术,为各种物联网应用提供了高性能,且高效节能的解决方案。深度睡眠时的电流仅为几微安,且能够完全保留 RAM 数据。运行、睡眠、低功耗运行和低功耗睡眠等其他功耗模式,助力开发人员能够在灵活地优化系统功耗的同时根据需求保持应用的高性能。

“”
图3:用于物联网应用的低功耗 MCU 框图

功率(至关重要)

设计物联网设备时所面临的一大挑战是高能耗。大多数物联网设备处于实时在线、小体积,这意味着自身电池容量非常有限。MCU 供应商在优化其在物联网应用时需要考虑诸多因素,比如:

  • 改进工艺技术

  • 提供高度灵活的功耗模式

  • 实现功耗优化过的硬件 IP 模块

  • 更高的集成度以减少组件数量

  • 优化闪存频率

  • 启用高速缓存

  • 支持更大范围的工作电压

然而,在工艺技术缩小体积、提高性能、改进功耗和集成度的同时,也出现了电流泄漏的管理问题,尤其是在低功耗模式下。为了应对电流泄漏问题的挑战,MCU 供应商采用了特殊的晶体管工艺技术,如多栅器件、高压晶体管/逻辑/电路、专门设计的存储单元以及其多方面的技术。

灵活的功耗模式能够促使开发人员安排独立系统活动,从而优化整体功耗。提供多种可以在低功耗模式下运行且可以在不唤醒 CPU 的情况下被唤醒执行其功能的外设,是这方面的关键技术。一些 MCU 还提供外围设备,只能执行有限功能的特殊低功耗工作模式(例如较低的工作频率和电压)以进一步优化应用功耗,甚至可以设计优化功耗的特定外设,即 BLE 无线电可以采用支持低功率无线通讯的设计。

影响功耗的另一个因素是非易失性(NV)内存访问,尤其是使用闪存(NV存储器)存储固件代码的 MCU。闪存访问的任何优化都会大大降低功耗,其目标是尽量减少闪存访问的频率。这里使用了两种常用的技术,其中一种是提供一个高速缓冲存储器。这样,实际的代码存储器(闪存)就无需在每个执行周期都被访问。另一种方法是增加一个周期内获取的数据量,通过使用范围更广的闪存访问降低闪存的访问频率。

基于物联网的 MCU 也可以提供灵活的电源系统。在支持宽电源电压范围的情况下,MCU 可以由多个电源供电。例如像健身跟踪器这类简单的物联网应用,可以由纽扣电池来供电,而智能手表这类复杂的物联网应用则需要由 PMIC (电源管理集成电路)供电。另外,一些 MCU 通过其内部的降压转换器来有效地调节自身电源。

在考虑MCU 的功耗模式时,超越其基本架构十分重要。例如,标准 ARM CPU 内核支持运行、睡眠和深度睡眠。附加功耗模式通常由特定的 MCU 供应商添加。例如,赛普拉斯的 PSoC 6 BLE MCU可执行包括,低功耗运行、低功耗睡眠和休眠状态在内的六种工作功耗模式。

“”
图4:PSoC 6 BLE MCU 的功耗模式转换示例

多处理器 MCU
(加快并行应用程序任务的运行速度)

基于物联网系统功能特性的增长,其复杂性也随之增加,而实际尺寸则越来越小。MCU 制造商的目标是提高系统的性能,同时尽可能降低尺寸和减少功耗。多核 MCU 和片上系统 (SoC) 通过在单个芯片中集成更多功能和最大限度地减少芯片面积提供更高的性能。多核处理器是包含两个或更多个独立核心(或CPU)的 MCU 或 SoC。这些内核通常集成在单个芯片上,它们也可以作为一个封装中的多个芯片。

多核 MCU 有助于提供高性能并保持小尺寸。可穿戴设备等典型的物联网设计需要多个 MCU,包括:一个用于无线通信的 BLE 控制器、用于执行用户界面的 Touch MCU 和一个用来实现该应用程序运行的主要的 MCU。这三种 MCU 的功能可以由一个高度集成的多核 MCU 提供。

多核 MCU 可带来许多其他益处。例如,它可以集成足够的资源使 CPU 能够并行处理密集型任务,从而充分发挥多任务处理的效率。这也使开发人员可以有效地将系统事件分配给特定的内核,从而达到功耗和性能目标。再比如,在双核可穿戴设计中,可以将需要较少 CPU 干预的周期性功能(例如无线广播和触摸感应)分配给一个内核。其他“频繁接触”的功能,如需要 CPU 频繁干预的传感器融合等,可以分配给另一个内核。当在系统中运行多个应用程序时,这种分区缩短了延迟时间。通过整合协议栈和程序存储器的集成还可以提高效率。

“”
图5:物联网多核MCU 示例

图6表示的是一个多核 MCU——赛普拉斯 MCU PSoC 6 BLE。该双核 MCU 具有两个32位 ARM Cortex CPU — Cortex-M4 和Cortex-M0+。这两个 CPU 都是具备一个32位的数据路径、寄存器和存储器接口的32位处理器。Cortex-M4 是专为实现短中断响应时间、高代码密度和高32位吞吐量同时保证严格的成本和功耗预算而设计的主 CPU。Cortex-M0+ 作为辅助 CPU,用于提供网络安全、物理安全和保护功能。Cortex CPU 执行 Thumb 指令集的一个子集,并具有两种被称为线程模式和处理者模式的操作模式。这些 CPU 在退出复位并执行应用程序软件时会进入线程模式。为了处理异常情况,CPU 会进入处理者模式。当所有异常处理完成后,CPU 返回到线程模式。

“”
图6:多核嵌入式 MCU 示例(PSoC 6 BLE)

处理器间通讯(实现外设共享和信息交换)

多核 MCU 通过需要处理器间通讯(IPC)来协调内核之间的运行。IPC 充当分配处理器间消息的通信管理器。现代 CPU 架构(如 ARM Cortex)支持硬件和固件中的多核通信,比如 SEV(发送事件)指令在执行时会提示设备中的所有核心。MCU 供应商采用多种方法来实现 IPC:

中断法:这种方法让一个内核向另一个内核发送一个中断来指示一个应用程序事件。通常中断程序非常紧凑,不会占用太多的代码存储空间。与任何中断机制一样,每个中断都有自己的 ISR(中断服务程序),通过它可以让相应的内核执行特定的任务。在实际的数据传递中,有一个可以被多个内核访问的共享内存。除了共享数据之外,它还提供了请求和确认消息的机制。

邮箱:邮箱是 RAM 中的专用存储空间,用于让每个 CPU 相互发送和接收消息。每个内核都要维护自己的 RAM 内存(邮箱)并将消息发送到其他内核的邮箱。

消息队列:消息队列使用共享内存的两个区域来存储每个核心发送给另一个核心的消息。第一个区域是被称为命令缓冲器的专用存储器,用于存储从主机发送到从机的命令。另一个专用存储器被称为消息缓冲器,它使从机能够响应主机。

“”
图7:处理器间通讯(IPC)的各种模式

信号量:信号量是一种防止多个源同时访问共享资源的机制。在多核处理器中,共享硬件位置作为信号量指示特定内核是否正在使用特定的共享外设等。在访问外设之前,系统中的其他内核会读取信号量状态以查看是否可用。

串行存储器接口(IoT 内存的选择)

内存是任何物联网系统不可缺少的组成部分。其功能主要是代码和数据存储。现代物联网设备不断增长的智能化需求带动了对更大代码和数据存储器的需求。但是将所有这些内存作为内部存储器集成到设备中会增加 MCU 的芯片尺寸和成本。另一种方法是根据需要提供外部扩展内存。这样开发人员就能够根据最终应用程序的需要添加内存。另外,如果在开发过程中内部存储空间预算不足,则可以增加外部存储器而不必重新设计整个系统。

了解外部存储器接口的速度和安全性以及使用方法也很重要。通常情况下,在节省 MCU上有限的 IO 引脚方面,串行存储器比并行存储器更好。基于 SPI 的串行存储器为数据记录提供了理想的接口速度,而直接执行外部代码则需要更高的速度。这些要求使 MCU 制造商必须提供 SPI 的替代品。以下是不同方案的数据吞吐量速度比较。

  • SPI:支持1位/循环的吞吐量

  • 双路SPI:支持2位/循环的吞吐量

  • 四路SPI:支持4位/循环的吞吐量

  • 双四路SPI:支持1字节/循环的吞吐量

通常情况下,MCU 同时支持多种类型的存储器,为开发人员提供了最大的灵活性。

由于许多物联网系统会处理用户的个人数据,因此确保数据的安全尤为重要。代码存储器也同样需要保护,以防止设备被非法入侵。外部存储器在安全性方面更加脆弱,因此需要特殊的机制来保护外部存储的数据。为此,MCU 使用各种加密技术(例如 AES、DES、RSA)来保护数据和代码免受非法访问。例如,赛普拉斯半导体的 PSoC 6 BLE MCU 提供了一个特殊的串行存储器接口(SMIF)外设,该外设支持直接执行外部代码的 XIP(现场执行)模式和记录数据的 MMIO(内存映射 IO)模式。它使用特殊命令进行控制,比如闪存的编程/擦除、存储器设备的睡眠模式输入等。

“”
图8:串行存储接口(SMIF)示例

SMIF 允许用户配置多个相同或不同类型和大小的存储设备。在内存(XIP)模式下,多个内存设备被映射到不同的地址。它们可以是不同类型和用途的存储器,也可以是在连续地址空间中配置以模拟连续大存储器的相同存储器设备。SMIF 外设和 SPI 闪存的组合使用可以替代外部 NAND 和 NOR 闪存,并且可以节省电路板空间。由于串行闪存直接映射到处理器的内存空间数据存储中并且支持 XIP 的执行,所以其易用性高于 NAND 内存。

系统的网络安全、隐私和设备安全
(信任根源)

设备一旦连网就存在被黑客入侵的可能性。因此,无论设备是运动手环还是联网汽车,物联网设备的安全性都是一个不容忽视的因素。所有层面都需要数据保护,包括存储、处理和通讯期间,从而确保系统的可靠性。另外,任何处理数据的软件或固件都应得到保护。可以在两个层面上实现这种安全性。第一个层面是软件安全,第二个层面是硬件安全,即通过硬件保护软件。

通常,安全软件使用存储在代码空间内的密钥。虽然这在技术上可以实现加密和解密,但这个过程仍然容易受到黑客攻击。这是因为它是一个存储代码,当代码被解码的那一刻,安全性就荡然无存了。

安全硬件则使用集成电路来保护系统,比如代码和数据的加密和解密。安全硬件是独立的,不需要任何额外的软件来操作,这杜绝了恶意代码、感染、污染或其他漏洞破坏系统、客户数据和服务的可能性。因此,在保护敏感数据或代码时,安全硬件是首选方法。所以用于物联网的 MCU 具有复杂的集成硬件安全特性,如密码块、代码保护 IP 和其他基于硬件的机制。

与固件相比,安全硬件还具有提供更快性能和更低功耗的优势。比如,赛普拉斯 PSoC 6 BLE MCU 中的专用加密模块可加速加密功能。此外,该模块提供了真随机数生成功能、对称密钥加密和解密、哈希、消息认证、随机数生成(伪随机和真随机)、循环冗余校验以及诸如启用/禁用、中断设置和标记等实用功能。该 MCU 组件还配备了安全启动功能。该功能使用 ROM 程序在闪存中验证用户数据。安全启动是一项包含加密技术的过程,它使物联网设备开始执行已认证的可信软件。因此,系统可以从一个已知、可信的状态开启。

在第一部分中,我们介绍了先进的工艺技术、低功耗设计技术、多核系统的功耗、内核间通讯、串行存储器接口以及系统安全性。第二部分将介绍高级 BLE 无线链路、模拟前端、智能触摸界面以及其他重要的物联网设计技术。

“”
图9:物联网 MCU 的安全生态系统

本文转载自:Cypress
转载地址:http://mp.weixin.qq.com/s/iv4rn4RKuykDQ6qNhdY-yA
声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有,如涉及侵权,请联系小编进行处理。

围观 11

对于智能手表等穿戴式产品以及物联网设备,在电力部分达到低耗电目标、不需要经常进行烦人的充电动作,以及能够确保在随心所欲使用下有足够的电源,是关系到产品被信任度及价值性的关键问题。

就目前来说,无论是振动、温差、太阳能,利用自然现象的发电技术,虽然能够及时补充所需的电力,但是由于期望穿戴式产品,或物联网设备在重要时刻不会突然出现电力中断而带来致命性问题的话,电源管理设计相对地就会变得非常重要。

大多的电源电路、电子电路、充电电池以及家用的交流电电源等,都是以能够提供稳定的电源输出来提供所需电力为前提而进行各种技术的开发,由于像前述利用自然现象的发电技术,因为是在相当低的电压下来取得非常不稳定的电力,因此相对应的电源技术就显现出其必要。

新制程出现,硅电源半导体处于相对劣势

就一般而言,AC-DC转换器、DC-DC转换器、逆变器等,皆是由电源控制电路、电源组件(IGBT及电源MOSFET等)、闸极驱动(Gate Driver)、隔离器(isolator)等等所组成。但就目前其中的电源半导体来说,像是SiC(碳化硅)、GaN(氮化镓)等的新一代电源。

组件相当的备受注目。使用这些电源半导体的话,不仅仅能够获得更高的电源转换效率,同时也能够达到小型、轻量化的目的。

事实上,在工业用设备、车辆、绿色能源设备等方面已经开始被应用,而达到电源的高效率化以及小型化。

另一方面,也可以感受到现有硅电源半导体逐渐居于相对性的劣势,但是就仅仅因为这样,而一味的改用新一代电源组件的话,或许也不是非常的适当。

在最近,特别是绝缘闸双极晶体管(IGBT)的出现相当显著的改善,由于在内部结构的改善以及制程更趋向细微化之下,可以感受到已经达到电力浪费的降低,以及转换效能有明显提升的结果。

“”
图1 : 更高的效率追求下SiC(碳化硅)、GaN(氮化镓)将成为新一代电源主流组件

因此,借助更先进的结构设计与制程技术,在提高IGBT等等的硅电源半导体之后,在为了更高的效率追求下,并非只能舍弃硅电源半导体组件而改采用SiC(碳化硅)、GaN(氮化镓)等新一代电源组件。

利用数字可编程找出最佳电压波形

此外,闸极驱动(Gate Driver)的部分,则是由放大器电路(Amplifier)以及晶体管开关(Switching transistor)等所组成,再由IGBT的闸极来接连闸极驱动的输出,再透过驱动讯号来对IGBT的开或关进行控制,而在其中最为重要的就是驱动讯号的波形。

对于波形的稳定度来说,会直接的影响电源的转换效率(电力耗损)以及噪讯是否过大。例如波形因为变换效率增强而出现急遽上升的话,电流波形将会出现瞬间过冲(Overshoot)使得噪讯增加。

因此在这个时候,一般而言,电源设计者就会在连接IGBT和闸极驱动之间的电路增加电阻,来调整转换效率以及噪讯的权衡(trade-off),但是能够调整参数只有为了阻抗值而已,很少数的情况下才有机会达到效率的调整。

从闸极驱动(Gate Driver)所输出驱动讯号的波形如果能够被数字可编程,这样的话,就能够随意地设定波形的细致度。

举例来说,利用4个或8个Time Segment,针对每个Time Segment都提供独立的64阶可调设电压。在最初的Time Segment突然间设定高电压的话,就能达到快速攀升的驱动讯号,反之,在最初设定低电压后,在Time Segment增加的电压值则会缓慢上升。这样的驱动讯号波形的设定弹性相当高,如果是4个Time Segment时,就能够有64阶乘上4个Time Segment,总共有1677万个组合,就能够在有限的人力资源下找到最佳的波形。

“”
图2 : 将输出驱动讯号的波形利用数字可编程,就能随意地设定波形的细致度

如何稳定的供应物联网产品驱动所需电力

以目前的应用市场而言,能够连上网络的设备或产品,每年销售新型态产品都呈现急速的增加,另一方面,这类型产品的开发趋势,也就愈来越小型化以及随身化。

就像是可携式的医疗设备,包括了常见的测量用传感器、再演进到可埋入身体的心律调整器或人工内耳助听器等,只要在身体上所放置的这类型产品具有无线功能,就能够自动连接上网络。

但是,无论是穿戴式或是可埋入身体的这些产品具有联网功能,而被称之为物联网产品都具有相同的一个研发课题,那就是如何稳定的供应产品所需要的驱动电力。

这些穿戴式产品在使用时的舒适感会直接影响购买的欲望,因此在外观上,经常会被设计成轻薄短小,或是依赖加入更多的各类型传感器来达到人性化的目的。

不过由于这种目的,使得担负电力供应的电池体积就会被局限在一定的范围之内,或者是被设计成使用者无法自行更换,因此就必须附加令人讨厌的充电电源线,如果一旦无法有效进行电源消耗管理的话,势必会让使用者用一段时间后就必须进行充电的动作。

例如,可联网的义肢等产品,如果是正在进行联网动作无法中断,而又出现电力不足时,这时就需要接上充电电源线,但是一般的电源线在使用上,例如长度或转折的地方,都会对使用者造成一定程度的不舒适感。

因此,在长时间使用无法自行更换电池的物联网终端时,半导体组件的低电压化与低耗电化技术就显得非常重要。特别是采用1V以下低电压电源的半导体组件驱动技术,以及利用自然现象发电的产品。

以目前来说,1.2V电压驱动的CMOS电路的电源电压大多降到0.3V,虽然耗电的部分可以减少到1/1000,但反应速度也变慢了100倍。这样一来,虽然能源的效率增加了10倍,但也影响了产品的效能。

不过,由于低电压的影响所造成反应速度变慢,在这一方面,或许可以考虑采用分时同工或多核心来作为弥补,达到低电压化的基本结构。

当然,我们也知道,也不能单纯一味地降低电压,因为现阶段的半导体芯片,除了逻辑电路之外,也持续的加入个组件电路,例如包括内存、AC-DC变压器、无线电路等,基本上这些都能够靠1V的供电电压下,驱动所有的功能性电路区块。

不过,当驱动电压降到了0.5V的时候,这时内建在芯片里的各个功能性电路就会出现程度不一的变化,因此能够提供满足各种功能电路区块的电压,就成了一项不可或缺的考虑和工作,这时面对各种电压要求下,多电压电源供应也就成了单芯片必要的能力之一。

“”
图3 : 提供满足各种功能电路区块的电压,是未来研发时不可或缺的考虑和工作

例如,在单一芯片内需要10种不同电压电源供应的话,或许就必须准备10种不同的外部电源,这对于使用者来说是相当不方便的,这也就促进了多电源电路的单芯片化和低耗电化的技术研发,就像英特尔的Core架构的第四代产品Haswell(开发代号),在其单芯片的内部就采用了13种不同电源电压。

无线OnChip电源电路

采用自然现象发电技术,须考虑极度不稳地电压输入的条件

在面对技采用自然现象发电技术的物联网产品时,在供电的电源电路方面,就必须考虑极度不稳地电压输入的条件,这时升压电路就会变得非常重要。

例如,在面对利用体温和室温的温差发电,或者是太阳能发电的产品上,发电输出电压大约是100mA左右或者更低,这时如果需要让驱动电压为1V的组件动作的话,就必须依赖强大的升压电路。

对于这样的需求,市场上的功率芯片业者就提供了相对应的产品,例如可以支持20mV的升压功率组件,但是在为了完成整体电源电路结构时,还必须考虑使用1对100的变压器等外部附加的组件,来达到让用户不必担心电力问题而随心所欲的使用穿戴式等等的物联网产品。

其实,对于供电电压在100mV的情况下,在技术上是有一定的困难度。根据实际设计的经验来说,在80mV进行升压的状况下,在升压电路中是无法使用MOS晶体管来进行开关的动作,80mV的电压是比MOS的动作门坎电压还低很多,所以没有办法对闸极输入ON的状态,因此在芯片的内部,就必须对闸极电压进行提升来达到让闸极作动,这也是非常重要的。

这时就可以利用电荷帮浦转换器(Charge pump),在接受80mV电压的电荷帮浦转换器,由于驱动力量还是非常低,因此会一点一滴地将电荷储存起来,从0V到0.5V缓慢地升压,当储存到一定的能量之后,一口气送出0.5V的电力,强迫进行开关(ON/OFF)的动作,此外如果更进一步的话,也可以在单芯片的变压电路上去除电感组件。
微波辐射也会影响电力的变化

除了电压的问题之外,在利用自然现象发电之下,要能稳定供应电源还有着各种的问题点需要克服,例如,采用RF无线充电时,所产生出来的微波辐射也会影响电力的变化,而这些的RF无线充电几乎都是来自1GHz以上的高频率电波。相同的利用RF无线充电所获得的电压也是相当低,这时,如何完善的对高频低压来进行升压的技术也是非常的重要。另外,利用压电组件震动发电时,也将会面临30V的交流电压,这时就需要考虑如何有效控制高压的交流电。

伴随着物联网产品功能性与充电能力不断的增加,内部所采用的半导体组件也将会愈来愈复杂,彼此的分工也愈来愈细,这时就会面对在大量生产下,如何降低生产成本的困难课题,就像是采用不同的自然现象发电供应电源时,就必须匹配不同的电源处理单元与电路。

当然也可以使用相同的电源处理单元与电路情况下,透过调整输入的特性设定能够符合不同的供电来源,虽然解决了一个电路匹配不同供电源的成本问题,但是却又会产生能否达到电源优化的目的。

基于这样的概念,事实上,也有专家进行相关的研究,但是最终都是以放弃作为收场,原因还是出在效率无法优化。

或许这样同一电源电路匹配各种不同电源供应的理念目标,还是必须等待在未来功率组件业者开发出更聪明、更有效率的新产品出来。

本文转载自:重庆IOT
转载地址:https://mp.weixin.qq.com/s/JjXnEM0ZARImbXz_pIe0Mw
声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有,如涉及侵权,请联系小编进行处理。

围观 3

随着全球物联网的部署数量持续地增加,据羿戓设计所了解,2016-2021年全球物联网端点之复合年均成长率以19.4%的速度高速成长,IDC预估2021年的物联网端点安装数量将高达361亿个,显示物联网市场有着很大的发展机会,此外IDC的研究报告也提出物联网市场的驱动力与潜在阻力。

“”

一、驱动力

(一). 装置容量和宽带需求

预期:因物联网的部署与日俱增,而各种装置都需要连接,且各领域多以低宽带传感器的网络为主。在这种情况下,LPWAN(Low-Power Wide-Area Network,低功率广域网)技术非常适合以低成本进行连接和汇整传感器数据。

影响:LPWAN连接将与蜂巢式通讯技术(cellular technologies)进行竞争,因此,蜂巢式通讯技术供货商将需要建立创新且灵活的大规模布局订价机制,以保持竞争优势。

(二). 部署5 G网络

假设:许多物联网的部署都需具备低延迟(low latency)的实时通讯,并能容纳大量的数据流量。5G网预计将在2019-2020年向大众推出,而美国的AT&T和Verizon公司在2017年做了一些早期测试,5G网络将具有更快的速度、更大的通讯管道(pipe)、更广的覆盖范围、更低的功率消耗以及更低的延迟。

影响:5G网络的出现预计将成为物联网蜂巢式通讯的福音,且能帮助蜂巢式通讯供货商保有比LPWAN更强竞争优势。

二、潜在阻力

(一). 频谱(Spectrum)与服务质量

预期:对于正考虑想要建立连接端点的组织,最重要的是必须以服务质量去衡量各种连接选项的成本价值。用户许可证的频谱进行联机,可以保证服务在特定的频率下运行,然而无授权的频谱,如LoRa技术、Sigfox运营商,将难以保证服务质量。

影响:尽管LPWAN的解决方案具有令人满意的优势,但未授权频谱和独特技术的服务质量不良,例如Sigfox和LoRa,将导致终端用户将非授权频谱运用于非关键业务的应用程序中,这将成为LPWAN近期发展的阻力。然而,LPWAN连接是一个新兴的高度成长领域。窄频IoT (Narrowband IoT)与另一种LPWAN技术已完成3GPP LPWA的认证,商业解决方案预计将于2017年推出。

(二). 制定标准的需求

预期:虽然目前在制定标准方面取得了进展,但相关机构在提供、促进开放、与数据协议上却仍未见到实际结果。IDC的研究指出专为物联网设计的初步标准协议已让市场深感兴趣,且多个标准组织正积极地制定与营销他们自己的标准,以引领下一个物联网标准。

影响:虽不清楚市场将会出现一个或多个物联网协议,但这将使全球的物联网市场对物联网解决方案之附加价值进行规划,进而实现企业和消费者所预期的利益。

本文转载自:电子工程网
转载地址:http://www.eechina.com/thread-520017-1-1.html
声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有,如涉及侵权,请联系小编进行处理。

围观 5

页面