对于智能手表等穿戴式产品以及物联网设备,在电力部分达到低耗电目标、不需要经常进行烦人的充电动作,以及能够确保在随心所欲使用下有足够的电源,是关系到产品被信任度及价值性的关键问题。

就目前来说,无论是振动、温差、太阳能,利用自然现象的发电技术,虽然能够及时补充所需的电力,但是由于期望穿戴式产品,或物联网设备在重要时刻不会突然出现电力中断而带来致命性问题的话,电源管理设计相对地就会变得非常重要。

大多的电源电路、电子电路、充电电池以及家用的交流电电源等,都是以能够提供稳定的电源输出来提供所需电力为前提而进行各种技术的开发,由于像前述利用自然现象的发电技术,因为是在相当低的电压下来取得非常不稳定的电力,因此相对应的电源技术就显现出其必要。

新制程出现,硅电源半导体处于相对劣势

就一般而言,AC-DC转换器、DC-DC转换器、逆变器等,皆是由电源控制电路、电源组件(IGBT及电源MOSFET等)、闸极驱动(Gate Driver)、隔离器(isolator)等等所组成。但就目前其中的电源半导体来说,像是SiC(碳化硅)、GaN(氮化镓)等的新一代电源。

组件相当的备受注目。使用这些电源半导体的话,不仅仅能够获得更高的电源转换效率,同时也能够达到小型、轻量化的目的。

事实上,在工业用设备、车辆、绿色能源设备等方面已经开始被应用,而达到电源的高效率化以及小型化。

另一方面,也可以感受到现有硅电源半导体逐渐居于相对性的劣势,但是就仅仅因为这样,而一味的改用新一代电源组件的话,或许也不是非常的适当。

在最近,特别是绝缘闸双极晶体管(IGBT)的出现相当显著的改善,由于在内部结构的改善以及制程更趋向细微化之下,可以感受到已经达到电力浪费的降低,以及转换效能有明显提升的结果。

“”
图1 : 更高的效率追求下SiC(碳化硅)、GaN(氮化镓)将成为新一代电源主流组件

因此,借助更先进的结构设计与制程技术,在提高IGBT等等的硅电源半导体之后,在为了更高的效率追求下,并非只能舍弃硅电源半导体组件而改采用SiC(碳化硅)、GaN(氮化镓)等新一代电源组件。

利用数字可编程找出最佳电压波形

此外,闸极驱动(Gate Driver)的部分,则是由放大器电路(Amplifier)以及晶体管开关(Switching transistor)等所组成,再由IGBT的闸极来接连闸极驱动的输出,再透过驱动讯号来对IGBT的开或关进行控制,而在其中最为重要的就是驱动讯号的波形。

对于波形的稳定度来说,会直接的影响电源的转换效率(电力耗损)以及噪讯是否过大。例如波形因为变换效率增强而出现急遽上升的话,电流波形将会出现瞬间过冲(Overshoot)使得噪讯增加。

因此在这个时候,一般而言,电源设计者就会在连接IGBT和闸极驱动之间的电路增加电阻,来调整转换效率以及噪讯的权衡(trade-off),但是能够调整参数只有为了阻抗值而已,很少数的情况下才有机会达到效率的调整。

从闸极驱动(Gate Driver)所输出驱动讯号的波形如果能够被数字可编程,这样的话,就能够随意地设定波形的细致度。

举例来说,利用4个或8个Time Segment,针对每个Time Segment都提供独立的64阶可调设电压。在最初的Time Segment突然间设定高电压的话,就能达到快速攀升的驱动讯号,反之,在最初设定低电压后,在Time Segment增加的电压值则会缓慢上升。这样的驱动讯号波形的设定弹性相当高,如果是4个Time Segment时,就能够有64阶乘上4个Time Segment,总共有1677万个组合,就能够在有限的人力资源下找到最佳的波形。

“”
图2 : 将输出驱动讯号的波形利用数字可编程,就能随意地设定波形的细致度

如何稳定的供应物联网产品驱动所需电力

以目前的应用市场而言,能够连上网络的设备或产品,每年销售新型态产品都呈现急速的增加,另一方面,这类型产品的开发趋势,也就愈来越小型化以及随身化。

就像是可携式的医疗设备,包括了常见的测量用传感器、再演进到可埋入身体的心律调整器或人工内耳助听器等,只要在身体上所放置的这类型产品具有无线功能,就能够自动连接上网络。

但是,无论是穿戴式或是可埋入身体的这些产品具有联网功能,而被称之为物联网产品都具有相同的一个研发课题,那就是如何稳定的供应产品所需要的驱动电力。

这些穿戴式产品在使用时的舒适感会直接影响购买的欲望,因此在外观上,经常会被设计成轻薄短小,或是依赖加入更多的各类型传感器来达到人性化的目的。

不过由于这种目的,使得担负电力供应的电池体积就会被局限在一定的范围之内,或者是被设计成使用者无法自行更换,因此就必须附加令人讨厌的充电电源线,如果一旦无法有效进行电源消耗管理的话,势必会让使用者用一段时间后就必须进行充电的动作。

例如,可联网的义肢等产品,如果是正在进行联网动作无法中断,而又出现电力不足时,这时就需要接上充电电源线,但是一般的电源线在使用上,例如长度或转折的地方,都会对使用者造成一定程度的不舒适感。

因此,在长时间使用无法自行更换电池的物联网终端时,半导体组件的低电压化与低耗电化技术就显得非常重要。特别是采用1V以下低电压电源的半导体组件驱动技术,以及利用自然现象发电的产品。

以目前来说,1.2V电压驱动的CMOS电路的电源电压大多降到0.3V,虽然耗电的部分可以减少到1/1000,但反应速度也变慢了100倍。这样一来,虽然能源的效率增加了10倍,但也影响了产品的效能。

不过,由于低电压的影响所造成反应速度变慢,在这一方面,或许可以考虑采用分时同工或多核心来作为弥补,达到低电压化的基本结构。

当然,我们也知道,也不能单纯一味地降低电压,因为现阶段的半导体芯片,除了逻辑电路之外,也持续的加入个组件电路,例如包括内存、AC-DC变压器、无线电路等,基本上这些都能够靠1V的供电电压下,驱动所有的功能性电路区块。

不过,当驱动电压降到了0.5V的时候,这时内建在芯片里的各个功能性电路就会出现程度不一的变化,因此能够提供满足各种功能电路区块的电压,就成了一项不可或缺的考虑和工作,这时面对各种电压要求下,多电压电源供应也就成了单芯片必要的能力之一。

“”
图3 : 提供满足各种功能电路区块的电压,是未来研发时不可或缺的考虑和工作

例如,在单一芯片内需要10种不同电压电源供应的话,或许就必须准备10种不同的外部电源,这对于使用者来说是相当不方便的,这也就促进了多电源电路的单芯片化和低耗电化的技术研发,就像英特尔的Core架构的第四代产品Haswell(开发代号),在其单芯片的内部就采用了13种不同电源电压。

无线OnChip电源电路

采用自然现象发电技术,须考虑极度不稳地电压输入的条件

在面对技采用自然现象发电技术的物联网产品时,在供电的电源电路方面,就必须考虑极度不稳地电压输入的条件,这时升压电路就会变得非常重要。

例如,在面对利用体温和室温的温差发电,或者是太阳能发电的产品上,发电输出电压大约是100mA左右或者更低,这时如果需要让驱动电压为1V的组件动作的话,就必须依赖强大的升压电路。

对于这样的需求,市场上的功率芯片业者就提供了相对应的产品,例如可以支持20mV的升压功率组件,但是在为了完成整体电源电路结构时,还必须考虑使用1对100的变压器等外部附加的组件,来达到让用户不必担心电力问题而随心所欲的使用穿戴式等等的物联网产品。

其实,对于供电电压在100mV的情况下,在技术上是有一定的困难度。根据实际设计的经验来说,在80mV进行升压的状况下,在升压电路中是无法使用MOS晶体管来进行开关的动作,80mV的电压是比MOS的动作门坎电压还低很多,所以没有办法对闸极输入ON的状态,因此在芯片的内部,就必须对闸极电压进行提升来达到让闸极作动,这也是非常重要的。

这时就可以利用电荷帮浦转换器(Charge pump),在接受80mV电压的电荷帮浦转换器,由于驱动力量还是非常低,因此会一点一滴地将电荷储存起来,从0V到0.5V缓慢地升压,当储存到一定的能量之后,一口气送出0.5V的电力,强迫进行开关(ON/OFF)的动作,此外如果更进一步的话,也可以在单芯片的变压电路上去除电感组件。
微波辐射也会影响电力的变化

除了电压的问题之外,在利用自然现象发电之下,要能稳定供应电源还有着各种的问题点需要克服,例如,采用RF无线充电时,所产生出来的微波辐射也会影响电力的变化,而这些的RF无线充电几乎都是来自1GHz以上的高频率电波。相同的利用RF无线充电所获得的电压也是相当低,这时,如何完善的对高频低压来进行升压的技术也是非常的重要。另外,利用压电组件震动发电时,也将会面临30V的交流电压,这时就需要考虑如何有效控制高压的交流电。

伴随着物联网产品功能性与充电能力不断的增加,内部所采用的半导体组件也将会愈来愈复杂,彼此的分工也愈来愈细,这时就会面对在大量生产下,如何降低生产成本的困难课题,就像是采用不同的自然现象发电供应电源时,就必须匹配不同的电源处理单元与电路。

当然也可以使用相同的电源处理单元与电路情况下,透过调整输入的特性设定能够符合不同的供电来源,虽然解决了一个电路匹配不同供电源的成本问题,但是却又会产生能否达到电源优化的目的。

基于这样的概念,事实上,也有专家进行相关的研究,但是最终都是以放弃作为收场,原因还是出在效率无法优化。

或许这样同一电源电路匹配各种不同电源供应的理念目标,还是必须等待在未来功率组件业者开发出更聪明、更有效率的新产品出来。

本文转载自:重庆IOT
转载地址:https://mp.weixin.qq.com/s/JjXnEM0ZARImbXz_pIe0Mw
声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有,如涉及侵权,请联系小编进行处理。

围观 3

随着全球物联网的部署数量持续地增加,据羿戓设计所了解,2016-2021年全球物联网端点之复合年均成长率以19.4%的速度高速成长,IDC预估2021年的物联网端点安装数量将高达361亿个,显示物联网市场有着很大的发展机会,此外IDC的研究报告也提出物联网市场的驱动力与潜在阻力。

“”

一、驱动力

(一). 装置容量和宽带需求

预期:因物联网的部署与日俱增,而各种装置都需要连接,且各领域多以低宽带传感器的网络为主。在这种情况下,LPWAN(Low-Power Wide-Area Network,低功率广域网)技术非常适合以低成本进行连接和汇整传感器数据。

影响:LPWAN连接将与蜂巢式通讯技术(cellular technologies)进行竞争,因此,蜂巢式通讯技术供货商将需要建立创新且灵活的大规模布局订价机制,以保持竞争优势。

(二). 部署5 G网络

假设:许多物联网的部署都需具备低延迟(low latency)的实时通讯,并能容纳大量的数据流量。5G网预计将在2019-2020年向大众推出,而美国的AT&T和Verizon公司在2017年做了一些早期测试,5G网络将具有更快的速度、更大的通讯管道(pipe)、更广的覆盖范围、更低的功率消耗以及更低的延迟。

影响:5G网络的出现预计将成为物联网蜂巢式通讯的福音,且能帮助蜂巢式通讯供货商保有比LPWAN更强竞争优势。

二、潜在阻力

(一). 频谱(Spectrum)与服务质量

预期:对于正考虑想要建立连接端点的组织,最重要的是必须以服务质量去衡量各种连接选项的成本价值。用户许可证的频谱进行联机,可以保证服务在特定的频率下运行,然而无授权的频谱,如LoRa技术、Sigfox运营商,将难以保证服务质量。

影响:尽管LPWAN的解决方案具有令人满意的优势,但未授权频谱和独特技术的服务质量不良,例如Sigfox和LoRa,将导致终端用户将非授权频谱运用于非关键业务的应用程序中,这将成为LPWAN近期发展的阻力。然而,LPWAN连接是一个新兴的高度成长领域。窄频IoT (Narrowband IoT)与另一种LPWAN技术已完成3GPP LPWA的认证,商业解决方案预计将于2017年推出。

(二). 制定标准的需求

预期:虽然目前在制定标准方面取得了进展,但相关机构在提供、促进开放、与数据协议上却仍未见到实际结果。IDC的研究指出专为物联网设计的初步标准协议已让市场深感兴趣,且多个标准组织正积极地制定与营销他们自己的标准,以引领下一个物联网标准。

影响:虽不清楚市场将会出现一个或多个物联网协议,但这将使全球的物联网市场对物联网解决方案之附加价值进行规划,进而实现企业和消费者所预期的利益。

本文转载自:电子工程网
转载地址:http://www.eechina.com/thread-520017-1-1.html
声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有,如涉及侵权,请联系小编进行处理。

围观 5

专注于新产品引入 (NPI) 并提供极丰富产品类型的业界顶级半导体和电子元件分销商贸泽电子 (Mouser Electronics) 宣布与Rigado签订全球分销协议,即日起开售Rigado的无线模快、开发套件和网关产品。Rigado专为物联网 (IoT) 推出的边缘连接解决方案套件可帮助工程师轻松设计、部署和扩展低功耗无线架构,降低商用物联网的部署成本和风险。贸泽电子供应的Rigado产品系列包括R41Z和BMD-300系列无线模块及开发套件。

“”

Rigado的低功耗蓝牙模块是技术先进、高度灵活的超低功耗多协议模块化系统 (SoM),适用于极低功耗的便携嵌入式系统。Rigado 的BMD-300系列是基于Nordic nRF52 片上系统 (SoC) 的超低功耗蓝牙5模块系列。此系列搭载Arm® Cortex®-M4F内核与嵌入式2.4 GHz收发器,提供三个版本的完整射频解决方案:内部天线 (BMD-300)、U.FL连接器 (BMD-301) 和超迷你 (BMD-350)。

R41Z多模式模块是高度集成的超低功率单芯片设备,同时支持蓝牙® 4.2和基于802.15.4的Thread协议。R41Z 搭载NXP KW41Z微控制器和Arm Cortex-M0+处理器,可以有效平衡功率和性能,并可以灵活扩展,为商业照明和楼宇自动化等应用提供理想的解决方案。

R41Z和BMD-300系列模块都通过了完整认证并有配套的Rigado评估套件。这些评估套件提供Arduino Uno兼容的接头、电源和USB虚拟成COM口功能、两个电容式触控按钮以及内置传感器,可用于轻松、快捷地设计智能设备原型。

要进一步了解贸泽供应的Rigado产品,敬请访问https://www.mouser.cn/rigado/

贸泽电子拥有丰富的产品线与卓越的客服,通过提供采用先进技术的最新产品来满足设计工程师与采购人员的创新需求。我们库存有全球最广泛的最新半导体及电子元件,为客户的最新设计项目提供支持。Mouser网站Mouser.cn不仅有多种高级搜索工具可帮助用户快速了解产品库存情况,而且网站还在持续更新以不断优化用户体验。此外,Mouser网站还提供数据手册、供应商特定参考设计、应用笔记、技术设计信息和工程用工具等丰富的资料供用户参考。

关于贸泽电子 (Mouser Electronics)
贸泽电子隶属于伯克希尔哈撒韦集团 (Berkshire Hathaway) 公司旗下,是一家屡获殊荣的一流授权半导体和电子元器件分销商,专门致力于以最快的方式,向设计工程师和采购人员提供业界顶尖制造商的最新产品。作为一家全球分销商,我们的网站mouser.cn能够提供多语言和多货币交易支持,分销来自超过600家生产商的400多万种产品。我们通过遍布全球的22个客户支持中心为客户提供一流的服务,并通过位于美国德州达拉斯南部,拥有最先进技术的7万平方米仓库向全球170个国家/地区,超过55万家客户出货。更多信息,敬请访问:http://www.mouser.cn

关于Rigado
Rigado是物联网解决方案供应商,提供可定制的物联网网关产品、经认证的低功耗无线模块以及端到端的边缘连接平台。Rigado 产品提供开发、部署和管理真正可扩展物联网解决方案所需的产品,可显著减少搭建和管理物联网架构的时间、成本和风险。

围观 6

安森美半导体 ( ON Semiconductor) 发布了两款新型板(屏蔽板),进一步扩展了其最近发布的物联网 (IoT) 开发套件 (IDK) 平台的功能。随着这两款搭载蓝牙低功耗技术和智能无源传感器 (SPS) 的新屏蔽板的推出,客户现在可以针对智能家居/楼宇、智慧城市、工业自动化和移动医疗应用打造多种多样的独特用例。

蓝牙低功耗屏蔽板配备最近推出且通过蓝牙5认证的 RSL10 多协议无线电系统单芯片 (SoC)。凭借业内最低的深度睡眠电流和接收功耗,RSL10 帮助制造商打造电池寿命更长的 IoT 设备。而且,RSL10 外形小巧,有助于实现低功耗 IoT 传感器网络所需的超紧凑、高性价比终端设计。把蓝牙低功耗屏蔽板与 IDK 集成,客户能获得互补的联接选择,由此扩展连接、感测和致动器选项,包括照明和电机。

SPS 屏蔽板扩展了 IDK 的功能,使它能够从安森美半导体的无电池 SPS 传感器捕获测量温度、湿度和压力数据。这些传感器非常适合工业和其他应用中难以进入但需要监控的地方。这些应用的传感器必须拥有零维护特性,电池更换也是项挑战。将 SPS 屏蔽板与 IDK 配对,即可实现需要无电池传感、广域或本地联接以及致动选项的 IoT 应用的快速原型制作。

这两款新型屏蔽板扩展了 IDK 在感测、致动和有线/无线联接方面的可配置模块化的选择,从而为应用设计人员在未知所选通信协议的情况下提供充分的灵活性。由于应用屏蔽板提供开箱即用的 方案,让开发人员快速、轻松地启动项目,并能够将数据直接传送到云端,实现包括分析在内的增值服务。

IDK 屏蔽板配备完整的文档,包括完整的设计电路图、电路板布线和 Gerber 文件,可以加快设计从概念、开发到生产的不同阶段的衔接。而行业标准接口确保安森美半导体和其他供应商目前和未来提供的模块可以无缝集成到设计中,只需简单的“剪贴”方法就能完成终端产品设计,从而减少研发时间、费用和风险。

安森美半导体物联网策略主管 Wiren Perera 说:“新款屏蔽板将 IDK 提升到全新的层次,使独特类型的 IoT 应用创建成为可能。能量采集和无电池感测技术开创了在质量控制和预测性维护方面的全新 IoT 用例范式,应用领域从资产健全状况监测到农业不等。而无处不在的蓝牙技术则为低功耗联接创造了崭新的可能性。将这些新技术与现有丰富的高能效联接与致动产品组合和 IDK 的节点到云功能结合,就打造了功能强大的工具,有助把 IoT 解决方案和服务快速上市。”

围观 4

随着我们越来越深入物联网(IoT)领域,无论是新技术还是现有的技术,对安全这一问题的关注从未停止过。如果用户和提供商数据存在任何风险,那么灵活性、能源效率和互通性等优势便无从谈起。大多数技术都称自己具有更高的安全性,那么细说到蓝牙mesh网络,它的安全性又体现在何处呢?

安全

安全性是蓝牙mesh网络设计的核心,每个数据包都必须经过加密和验证。对于大多数蓝牙技术应用,您可以在开发产品时自定义网络安全性,这在采用单一设备连接的情况下很常见。然而,由于蓝牙mesh网络建立在成千上万台设备间进行相互通信,因此要确保整体网络的安全性,需要采取额外的措施和方法。

多层安全性

蓝牙mesh的安全性能够保护您的网络,避免各层中可能遇到的各种威胁或问题,包括中继攻击(Replay attack)、中间人攻击(Man-in-the-Middle attack)和垃圾桶攻击(Trash Can attack)。中继攻击可通过正确使用序列号来防止;中间人攻击可通过非对称性加密来防止,比如在重要程序中采用的椭圆曲线Diffie-Hellman(ECDH)密钥协议;来自废弃设备的垃圾桶攻击能通过在必要时刷新安全密钥来防止。

“”

蓝牙mesh是唯一基于强制性安全密钥构建的网络拓扑结构,能够在协议栈的多个层级上对网络进行保护。

  • 设备密钥(DevKey)让您拥有授权,能够对节点进行启动配置(provisioning)和配置,将设备添加到网络。

  • 蓝牙特有的应用密钥(AppKey)能够保护与特定应用相关的消息,例如照明、物理安全、温控等应用。

  • 网络密钥(NetKey)适用于网络上的所有消息,能让节点(Node)之间安全地进行相互通信。

将潜在威胁列入黑名单

如果将节点从蓝牙mesh网络中移除,则设备及其包含的密钥就无法发动攻击。您可以将该节点添加到黑名单中,防止它在密钥刷新时接收新的安全密钥。这样,从网络中移除的包含旧安全密钥的节点就不再是网络成员,也不会构成威胁,无法用于发动垃圾桶攻击(Trash Can attack)。

安全性是蓝牙mesh网络设计的核心,每个数据包都是经过加密和验证的。

多方面的冗余

在中继攻击(Replay attack)中,窃听设备会拦截并捕获一条或多条中继消息,然后用于转发。这将会欺骗消息接收设备,让它执行来自未授权设备的操作。常见的例子就是汽车的无钥匙访问系统,当认证序列被拦截时,这一访问系统就被攻破了,然后通过消息的中继就能访问该车辆。

“”

为防止中继攻击,蓝牙mesh网络使用两类网络PDU字段:序列号(SEQ)和IV索引。每次发布消息时,SEQ值都会递增。如果消息的SEQ值小于或等于上一个有效消息的SEQ值,则节点会将消息丢弃,因为这则消息可能与中继攻击有关。同样,消息中的IV索引值必须始终等于或大于它所收到的上一个有效消息。这种安全冗余可以提供更高水平的保护。

可靠、安全的连接

物联网的迅速发展已成为不争的事实。从Beacon到无线照明平台,我们已经看到物联网部署进入初始阶段。为了推动物联网解决方案的下一轮演进,可靠的、可扩展的、安全的无线连接需求至关重要。只有蓝牙mesh能够提供物联网所需的工业级、政府级、多层级的安全性。

本文转载自: 蓝牙技术联盟
转载地址:http://mp.weixin.qq.com/s/4g9dvRy3eJ9ToyMFWiDScQ
声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有,如涉及侵权,请联系小编进行处理。

浏览 1 次

“爸爸妈妈,天空为什么是蓝色的?”

在您思索是为孩子讲解空气折射率的知识还是转移他的注意力时,您已经心知肚明,无论您怎样回答,孩子都会天真地继续追问:“为什么呢?”等问题,直到您完全失去耐心。如果您有这种感受,那么欢迎来到保护物联网 (IoT) 的世界。这个世界里没有既定的标准,也没有绝对的错误。就像孩子提出的问题一样,我们可能只是闲聊或唤醒科学好奇心,至于何时停下来,则由作为系统设计师的您做主。就像上面的引导性问题一样,这个世界在很大程度上取决于问题的症结。

问题的症结

我们很快就会看到,保护物联网设备将可能成为一个需要投入无限成本,却又永无止境的问题(图 1)。不过,ARM* 物联网服务集团副总裁 Ian Ferguson 在最近的物联网设备安全峰会上表示,大多数物联网设备均有着非常严苛的成本目标。

“”
图 1.即便多个安全层也可能无法为物联网终端设备提供全面保护。

Ferguson 曾警告:“经济学原理已经不再适用。安全的芯片不可能仅仅靠 1 美元就得到解决。”

因此,物联网安全领域的第一个问题就是“它对您有何价值?”这完全取决于问题的症结。

可惜这个问题并不简单,并不是一个可以根据设备的预期用途给出回答的问题。Ferguson 举了一个利用水族箱控制器中的漏洞攻击某赌场安全网络的例子。您必须要问的不是物联网设备应该做什么,而是它能够做什么。它可以使飞机上的副翼转向吗?它能够操作电厂的高压开关吗?它能够触发不必要的维护程序吗?它可以避开防火墙吗?

物联网设备安全的管理原则并不是使设备无懈可击,您做不到这一点。而是要让狡猾的攻击者明白,攻击付出的代价大于收益。作出这个决定不仅需要了解被攻击的设备能够带来哪些损害,也需要仔细研究物联网设备中的哪些部分需要保护以及如何保护。

要点

假设物联网设备中有四种对象:硬件、软件和固件、数据以及进出设备的消息。每当设备使用其中一个对象时,它会做出三个假设:

  • 对象来自可信来源
  • 对象没有被篡改
  • 对象将按照系统设计师的预期方式运行

每次使用时,设备可以信任这些假设,也可以测试它们。

也许举个例子很合适。假设我们有一个物联网设备管理高压交流电源开关上的一组传感器,并控制开关位置。根据这一功能描述,设备可能是一个非常简单的微控制器 (MCU)。现在我们有一个命令到达设备的网络端口,告诉控制器关闭开关。您希望控制器读取命令并为执行器供电,当开关闭合时,通过网络端口确认消息的新状态。

我们来回顾一下这个场景,从安全设计的角度来看看。首先,命令到达。您有一些选择:您是否相信这个命令是未经过修改的真实命令,或者说您是否对它进行了验证?您是否相信它的行为,或者您是否对它进行监控?

如果您认为这个命令是合法的,则表示您信任数据中心的远程应用(可能是公有云),并且互联网的所有部分恰好位于消息的传递路径上。有一些情形可以证明这种信任是正确的。一种情形可能是错误命令的结果无关紧要——当然不是对电源开关无关紧要,而可能是简单的消费玩具。另一种情形可能是设备没有直接联网,而是通过安全的连接连到可信中心。否则,您需要对命令进行验证。

幸运的是,有一种使用公钥加密进行验证的合理方法(图 2)。这种技术使用一对加密密钥,其中一个密钥只有持有者知晓,另一个密钥可供所有人使用。任何一个密钥的持有者都可以对使用匹配密钥加密的任何内容进行解密。因此对我们来说,服务器可以创建其打算发送的命令的散列,使用其私钥对其进行加密,然后将命令和加密的散列发送到您的设备。接下来您自己可以创建命令的散列,然后使用您的公钥对服务器的加密版本进行解密。然后您可以将自己创建的散列与解密的散列进行比较。如果这两者相同,那么您可以比较肯定的是:

  • 私钥的持有者发送了命令(因为您的公钥成功对其进行了解密)
  • 这个命令没有修改过,因为传输前的散列和接收后的散列匹配。

“”
图 2.公钥加密可帮助设备验证消息

事实上,您不需要散列,您可以对整个命令进行加密和解密。但公钥算法需要大量计算资源,所以缺少硬件加密加速器和大量内存的设备会尽量缩短其必须处理的字符串的长度。除非常简短的命令之外,散列将比任何命令短很多。

您已经鉴定和验证了命令。您相信它是合法的。但为什么呢?您怎么知道自己使用的命令和公钥并非来自攻击者,而是来自您的服务器?因为有认证机构。认证机构是一个可信的第三方,已对公钥发起者的身份进行了验证。但您为何信任认证机构的证书呢?因为您使用相同的公钥算法(包含机构发给您的密钥)对证书进行了验证。但为什么…好了,您肯定明白了。除非您选择信任某方及其发给您的密钥,否则这个问题链将一直循环下去。这个问题有时可以归结为一个人将文件交给另一个人。

相信自己

到这里,偏执的人可能会认识到,我们仍然在做一些笼统的假设。如果有人篡改了您的加密应用代码或者操作系统,欺骗您接受这个命令呢?如果有人更改了您的公钥文件夹呢?或者更糟糕的情况,如果有人在您的硬件中置入了一个隐秘的后门呢?

如果风险很小,或者如果您不了解高价值系统曾遭遇过哪些攻击,那么上面这些问题听起来可能有点异想天开。毕竟,谁会对不值钱的消费类设备上的应用代码进行篡改?但确实有人攻击了成千上万台物联网婴儿监控器,创建了一个僵尸网络,然后用它发动了历史上最具破坏性的拒绝服务攻击之一。这并不是异想天开:即使您不是飞机控制系统或核电站的设计师,您也需要考虑这些问题。

第一次接收和验证对象时,验证软件和固件可以像按照您信任的散列检查对象阵列那样简单。更新必须按照针对我们命令的上述流程进行验证。每次加载操作系统和应用代码时,许多安全系统都会执行这一任务。但您为什么相信自己保存的散列呢?对于这个问题,您为什么相信自己的散列函数呢?最终,这种回归将我们引向了一个重要的概念:信任根。

解决方案根

现在,许多 CPU 架构都包含一种安全操作模式,在这种模式下,您可以确信代码的可信性、数据的正确性并且所有任务都得到适当授权。这种模式可让您对设备的加密和身份验证流程充满信心,并为您提供一种存储和保护密钥及证书的方法,使攻击者更难以更改它们。

实施信任根对 CPU 设计师而言并不是一件简单的工作:他们面临着与用户相同的无限回归问题。信任根必须从可信硬件着手,启动可信代码。现在的可信硬件是一个相对的术语。如果您在设计一些无害的东西,这可能意味着您从一家大型厂商购买了微控制器单元 (MCU)。如果您正在研究用于核武器的起爆装置,这可能意味着您使用严格的正规验证和功能安全标准来自己设计芯片,监督贵组织所控制或检查的国内工厂的芯片制造,并纳入到设计防篡改、旁路攻击防护和物理上不可克隆的功能 (PUF),从而为芯片提供不可复制的秘密 ID 号。然后您就可以信任硬件了。

安全启动可能同样具有挑战性。您必须确保启动代码是未经过修改的真实代码。我们当然可以使用与输入命令相同的解决方案:公钥解密和散列。我们如何在加载代码之前解密签名并计算散列值?

在大型系统中,答案是硬件安全模块 (HSM)。图 3 是一个受篡改和入侵检测保护的电路板或安全框,其中包含安全密钥存储和通常基于硬件的可信加密引擎。HSM 监督安全启动流程,在启用前对每个代码模块进行验证。

“”
图 3.硬件安全模块包含在防篡改安全模块中进行身份验证和加密/解密所需的所有硬件和代码。

但在 MCU 中呢?行业仍在研究如何将盒级 HSM 简化为低成本芯片上的 IP 模块。Ferguson 认为这是不可能的。其他人则认为,对于大多数系统而言,较简单的措施(例如将开机密码和密码保存在片上非易失性内存中)就足够了。

无论您如何保护启动过程,都有一个信任根的第三个基本组件:内存保护。对于可信代码、密钥存储、系统软件和数据结构而言,必须只能从信任根内部进行读取或修改的内存区。这需要一个硬件内存保护单元,它本身只能在信任根内进行设置。显然,这个内存保护单元将不得不初始化为已启用安全启动的状态。

实际上,系统会以这种方式运行。在初始化时,安全启动进程将在内存中创建一个可信区域,并将其加载到可信的代码和数据中,包括加密例程、可信的轻量级管理程序、加密密钥和证书。接下来,这一管理程序将以加密形式加载操作系统和应用代码,为每个任务分配物理保护的内存区域,并在激活之前使用散列和公钥方法对每个代码块进行解密和验证。通过这种方式,您可以比较肯定设备中的所有活动代码都来自可信来源且未被污染。内存保护硬件可确保即使出现问题,任何任务都不能读取或写入其他任务的代码或数据。

最后一个功能还可以让您的设备运行您不信任的代码。内存保护功能可以保证即使恶意代码也无法从其指定的区域分支出来,破坏其邻居,或在未经管理程序同意的情况下执行 I/O 操作。

那么,合法应用如何执行 I/O 操作呢?当然是通过系统调用。但您还有其他选择。所有应用都经过了身份验证,可以让它们按照自己的方式执行系统 I/O 调用。或者,您可能需要 I/O 请求和任务间通信,以便进入管理程序进行审批。然后管理程序可以检查规则,以查看请求是否适合于请求任务。管理程序甚至可以向证书证明其有权提出请求的任务提出要求。

活动监控器

所有这些措施都是为了防止被篡改的代码、数据或命令进入设备,或防止它们在进入设备后执行非法操作。但在关键系统中,您可能还需要更高级别的安全性:主动监控设备行为。

这个概念很简单:可信源知晓设备应该执行和不应该执行的操作,并监控设备的行为。简单而言,这个监控器可能是一个代码块,甚至是一个在设备可信区域运行的硬件状态机。当您可以通过一组紧凑的规则定义正确的行为时,这种方法是有效的。内存保护实际上就是一个例子:一组规则决定哪些代码可以访问内存中的哪些地址,保护单元的硬件执行这些规则。

随着规则变得越来越复杂,通过在可信软件中评估的规则进行监控可能不再可行。或者系统行为可能过于复杂,无法成功捕捉一组规则。解决这个问题的一个建议是使用机器学习。原则上,您可以通过训练神经网络来识别优劣行为,而不必制定规则。然后网络可以不断评估系统的行为,并在看到不良行为时发出警报。

但深度学习网络也有自己的问题。在如今的就业市场中,具备所需设计和培训技能的人才很难找到。将监督式学习所需的成千上万个标记示例组合起来很难,甚至不可能。构建示例集的过程容易受到攻击:犯罪分子可能会导致您的示例集存在偏见,从而导致网络忽略特定攻击。最后,在推理模式下运行训练网络所需的计算和内存资源非常重要。这对于 1 美元的 MCU 来说是不可能的。

对于大多数关键系统而言,异构冗余是异乎寻常的一个步骤。在这种方法中,您有三个不同的系统(如果可以在运行期间暂停和禁用设备,则有两个系统),每个系统专为设备的执行而设计和编程。每个系统都使用不同的硬件,由使用不同算法和库的不同团队进行编程。

这三个系统并行运行,通过多数投票的方式来确定设备的行为。若要成功破解设备,攻击者必须同时攻击这两个完全不同的系统。这样煞费苦心的攻击可能听起来很荒唐,但一些军事和其他危险设备可能需要这样的冗余系统。

付款

我们已经看过,开发安全的物联网设备可能需要可信的硬件和符合功能安全要求的方法。这可能是指加密硬件加速、防篡改的密钥存储位置、可信操作模式、实时设备监视器,甚至是完全冗余。

但这些对于 1 美元的 MCU 没有任何意义。怎么办呢?

有些人会忽视这个问题或提供一些令牌,从而轻松击败安全攻击。其他人会将安全责任上报到物联网中心,为端点终端设备提供安全庇护,将物联网设计转化为边缘计算网络。随着潜在销量的增长以及人们对威胁现状的了解,仍有其他供应商会利用先进工艺节点的大量晶体管来解决问题。在 7 纳米时,带某种内部 HSM 的三冗余 MCU 是可行的。

但 ARM 的 Ferguson 的观点更激进一些。在设备安全峰会上,Ferguson 主张预先了解保护物联网设备的真实成本并改变行业的业务模式,以便将成本分摊到整个供应链。这可以通过评估与物联网设备通信的系统的版税或关税来完成。或者半导体厂商可以从已完成的物联网系统所带来的收入或成本节省优势中获益。也许更有可能的是,安全设备只需 25 美元(而非 1 美元),真正安全的系统将由垂直一体化公司部署,这些公司可以将设备成本并入到系统成本中,然后从服务合同、维护以及系统数据的价值中收回成本。

与旧的 MCU 商用半导体市场相比,这是一个全新的世界。但这个世界面临着更多威胁,迟早要认真对待。

本文转载自:Intel-FPGA
转载地址:http://systemdesign.altera.com.cn/securing-iot-devices-can-be-never-ending/
声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有,如涉及侵权,请联系小编进行处理。

围观 5

据技术行业研究公司Gartner表示,物联网中每天增加的"事物"多达550万件。截止2020年,预计总数将达208亿。鉴于这种爆炸式增长,检查连接所有事物并在它们之间实现通信的互联网势在必行。事实证明,在这些设备之间建立可靠的无线连接是物联网的最大挑战之一。通信系统的可靠性可以用两个关键元件的性能来定义:射频收发器和通信微控制器。本文讨论ADI公司的元件和解决方案如何能够最大程度地提高系统级可靠性,以支持对数据质量和完整性以及洞察有极高要求的高影响力应用。

现有技术还不够好

面向消费电子设备的现有无线连接技术并不总是能满足工业和医疗保健系统的性能要求。这些系统中在安全性、准确性和时间灵敏度等方面的不同侧重点提高了增加可靠性的需求。蜂窝系统接近这一要求,但通常在电池、成本和数据吞吐量要求方面不太合适。当今存在极度可靠的系统,这些系统用于利基工业和军事应用。但是,这些系统在设计上以可靠性为最高优先级,成本则作为次要考虑。而在工业物联网中,我们面临的挑战是以低很多的系统成本实现相同的高级别可靠性。

让我们来看看几种添加无线功能以增强系统有效性和对连接可靠性有极高要求的情况。

智能工厂:工业4.0的生产过程控制

互联设备在制造业中的关键吸引力包括提高增产潜力。要实现这个目标,通常需要远程控制生产链中的多种设备以实施调整。在化工生产过程中操作锅炉的控制阀就是一个例子。对这个阀门实现即时自动化控制后,便可以根据生产过程中其他阶段的反馈进行实时调整,从而进一步优化整体效率。

“”

智能医疗:生命体征监测

医院和护理中心正在力求通过无线连接来监测患者的生命体征。笨重的有线解决方案可以由通过本地网关连接的无线传感器贴片所替代。此类系统既可减轻医护人员的负担,同时又能更高效地监测患者情况。

“”

智慧城市:应急事件的响应与检测

利用先进的图像和声音检测与处理方法,安装在公共场所(如灯柱上)的系统可以检测车辆事故和犯罪活动等事件并具有极高的可信度。然后,这类信息可随同位置信息一起通过无线通信转发到相关机构或单位,从而实现更快速的应急响应。

“”

在复杂环境中建立可靠无线连接的关键挑战

射频障碍导致数据包丢失

前面提到的各个示例都会受到可能对无线通信具有不利影响的不同环境挑战。工厂的钢结构和厚壁会造成很大的障碍,可能导致射频信号的功率降低到目标设备无法接收的程度。目标设备中所用无线电器件的接收器灵敏度将决定可以接受的信号衰减程度。灵敏度上低至2 dB的变化都可能决定信号接收的成败。通信系统设计人员在选择无线电器件时必须密切关注接收器灵敏度。

频段拥挤导致数据包丢失

通常来说,互联设备会在所在地区的相关ISM频段内工作。ISM频段为免执照频段,可用于各种需要无线连接的应用。2.4 GHz为全球标准化频率,广泛用于Wi-Fi和蓝牙®设备。1 GHz以下的频段中也包含ISM频谱。这些频段通常用于物联网应用。在欧洲和美国,该频段分别以868 MHz和915 MHz为中心。当位置接近的多台设备共用相同的ISM频段时,便会出现挑战。发送设备可能干扰附近的接收设备,例如在公立医院中,多种机器会共用相同的ISM频段。无线电器件在此类干扰环境中的工作能力由阻塞规格来衡量。而且,这种挑战并非仅来自于在ISM频段内工作的设备。如果阻塞能力不足,则在附近工作的手机或平板电脑也可能导致系统中出现通信丢失。在军事和航空航天应用中,会使用非常昂贵的元件来减轻干扰的影响。在对数据有极高要求的应用(如前面提到的应用)中,无线电器件必须能够实现与军事和航空航天应用中相似的性能,同时还不能因附加外部元件而带来高成本。在附近具有多个工作的干扰源时,此类无线电器件仍能继续接收消息。

环境影响导致性能下降

受所采用的工艺限制,无线电收发器的性能会根据所在的工作环境而发生变化。其中一些影响因素包括温度变化、电池放电导致的电压降低和设备间的芯片制造差异。这些生活中的真实事件可能导致设备的工作稳定性发生变化。让我们来看一下在路灯上采用的事件检测应急响应系统。寒冷冬季的气温可能导致设备的输出功率发生变化或接收器灵敏度下降。这可能在某些条件下导致通信中断。消费类设备很少在此类极端条件下使用,因此不必太过担忧这一问题,但对于应急响应系统而言,这是无法接受的。最好的情况下,代价是最终产品声誉受损,以及收到更换故障设备的维修请求。系统设计人员必须确保选择用于检测和通信系统的元件在不断变化的环境条件下保持稳定。

存储器损坏可能导致意外的结果

可靠性也是通信微控制器上需要考虑的问题。虽然闪存和非易失性存储器非常可靠,但偶尔也可能损坏。这可能由工作环境造成的意外影响引起,或由恶意的硬件攻击而故意导致。无论属于哪种机制,微控制器都必须配备必要的完整性功能以识别设备的损坏情况。识别后,微控制器可纠正错误或关闭设备,恰当地确保不会破坏更广泛系统的安全性。

ADI公司——打造可靠性设计

50多年来,ADI公司一直致力于设计鲁棒的解决方案来应对这些挑战。工业物联网的超稳健系统要求并不算新的挑战。超低功耗、sub-GHz ISM频段无线电器件ADF7030-1和Cortex® M3微控制器ADuCM3029旨在提供可实现最稳定通信链路的性能级别和功能特性。

就接收器灵敏度性能而言,ADF7030-1是业界领先的无线电器件。在很多情况下,ADF7030-1能够接收低于其他无线电器件可接收功率3 dB的无线电信号。这意味着,即使信号的强度低于其竞争产品可接收功率的一半,该器件仍可接收到该信号。

凭借超过100 dB的行业领先阻塞数据,ADF7030-1可实现与军事和航空航天设备相媲美的抗干扰水平,且无需增添昂贵的外部元件。这增加了价值并可确保在极其嘈杂的射频环境中保持正常通信。

经过与领先工业制造商的世代合作,ADI公司已经掌握了成熟的方法,可以应对真实生活环境对无线电收发器产生的影响。例如,在整个工作温度范围内,采用ADF7030-1的设备的输出功率变化不超过0.2 dB。这一成果的实现得益于ADI公司独一无二的无线电设计方法。在同类竞争的无线电产品中,相应的变化高达2 dB。

ADuCM3029具有闪存和ECC奇偶校验检查功能,可确保识别存储器损坏造成的错误并尽可能地纠正错误。另外,ADuCM3029还在休眠模式下配备电池监控功能。这确保可检测到电压的意外下降并提醒处理器可能存在恶意威胁或电源故障。然后,终端设备可采取相应的措施,提醒管理员或进入安全模式,以确保更广泛的系统不会被入侵。

ADI公司开发的技术遍及物联网信号链的每个阶段,从检测和测量到解析和连接数据,无处不在。确保这个信号链中所产生信息的质量和完整性是我们的核心设计原则,也是实现物联网真正潜力的基本要求。

作者

Michael Dalton

Michael Dalton 是ADI公司物联网部门的产品营销经理。Michael于2007年毕业于都柏林大学,拥有电子工程学士学位。2015年,他获得新型RF前同步码检测方法专利。

本文转载自: 亚德诺半导体
转载地址:http://www.analog.com/cn/technical-articles/reliable-communication-is-a-...
声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有,如涉及侵权,请联系小编进行处理。

围观 6

物联网(IoT)领域建立在云计算以及由移动、虚拟和即时连接搭建的数据采集传感器网络的基础之上,并且有望到2020年成为一个1.7万亿美元的市场。IoT已经渗透至各行各业:从工厂自动化到点播娱乐和可穿戴设备。

IoT无疑是推动半导体行业和嵌入式系统发展的新动力。它的诞生推升了市场对众多新使能技术的需求,其中包括:

  • 新一代超低功耗IC

  • 全新的无线通信协议

  • 分析及云计算的全新数据处理技术

随着互联网上的数据以艾字节为单位流动,物联网正不断推动对低功耗、高性能存储器的需求,而这种存储器还必须具有引脚数少的特点以适应且外形小巧的应用。通过结合特殊的低功耗模式(如深度低功耗和深度睡眠),微控制器已经适应了这一新要求。此外,这些微控制器的性能(时钟频率和功能集)还会随着更新换代而不断提高。为紧跟这一步伐,存储器设计人员必须不断进行调整,使客户不必担心性能与功耗之间的权衡。

零售业作为物联网增长日益突出的领域,本文是聚焦于关注该领域内半导体存储器发展趋势的系列报道中的最后一篇。大型商店已经开始使用物联网与他们的客户群展开互动,并且能够针对个人购物者量身打造个性化购物体验。整个商店的零售人员都可将设备彼此相连,还可连接到公司总部和云资源。最终目标是部署这类技术,利用收集的数据来推动销售、建立客户忠诚度、管理库存并提高运营效率。

在之前的文章中,我们探讨了零售领域中最早采用物联网的两个装置——销售终端机和电子货架标签。最新一代智能 POS 终端通常是零售商跟踪客户购物习惯、管理库存并通过促销来提升忠诚度的第一步。所有主要的 POS 终端供应商都已推出可实现这些功能的型号。这些型号往往功能强大、外形小巧,可由电池供电且安全性极高。相应地,这些要求也为装置中所采用的半导体芯片带来了挑战。

您可以点击下方相关阅读学习本系列第一部分有关 POS 终端的文章。电子货架标签是许多商店正在使用的相对较新的设备类型。这些货架装置可进行编程,能够根据促销和库存来更新标价并跟踪消费者的购物行为。它们还会自动执行繁琐任务,同时消除差异和延迟。因此,这些装置可以相对较低的投资为零售商提供重要的分析信息。您可在此阅读有关电子货架标签的文章。

在本文中,我们将介绍最后一项技术,这项技术已在多家商店中引入,并且在不久之后将继续被广泛采用。这些装置将为消费者带来更具吸引力的购物体验,同时帮助零售商实现库存管理和改善客户服务。

可穿戴技术可能是随着物联网蓬勃发展而出现的最普遍(和宣传力度最大)的技术。它们不但在日常生活的许多方面都非常有用,包括记录您的健身数据、接听电话和发送通知,并且他们还可以整合我们生活中许多其他方方面面活动。可穿戴设备可为智能零售业带来极大优势。例如,可以向购物者提供定制优惠、完成付款,甚至还可根据购物清单引导购物者逛商店。此外,这些零售商店的工作人员也可以用这些装置更高效的完成工作,从而提高完成量。部分可穿戴设备的应用可在库存管理和客户关系管理方面简化员工的工作效率。

相较于大多数其他的智能购物应用,可穿戴设备中对半导体的需求截然不同。这类半导体主要受功率、带宽和尺寸影响,而这也正是该系列所特有的要求。这一点也同样适用于要求小巧外形、低功耗和高带宽的存储器。

可穿戴设备中的 PCB 尺寸极小,可放入人的掌心或戴在手腕上。这意味着存储器的尺寸要求尽可能小巧,最好不超过裸片。除晶片尺寸封装外,其他手段难以实现这种尺寸。此外,现如今的可穿戴设备的功能需求几乎与移动设备一样,同样需要配备高清显示屏、能够运行功能强大的应用程序、从多个传感器不断采集数据,同时还可以运行大量后台任务。这种严苛的需求导致高端处理器和外围设备不可或缺。

由于可穿戴设备只能采用小型电池运行高速进程,因此其功耗也必须极低。对于较小的可穿戴设备,其电池使用寿命至少应为一天。若加大电池尺寸,则会导致可穿戴设备的重量和尺寸增加,导致设备美观度的降低。

“”
图1:典型的可穿戴架构

图 1 显示了可穿戴设备的典型组件。功耗最大的组件是显示屏。不过,功耗的差异很大,具体取决于显示屏是 LCD(功耗最高)、OLED 还是电子墨水屏(最低)。其余组件的一般架构在所有可穿戴设备中基本类似。Cortex M4 是使用最广泛的控制器之一,具有较低的功耗和出色的性能。Cortex M4 控制器的内部 RAM 大小介于 384KB 到 768KB 之间。 尽管这些设备体积小巧,但它们可执行复杂的任务,并从各种传感器收集大量数据。机载 RAM 可以较低的待机电流备份数据,支持设备存储传感器数据、构建用于蓝牙传输的协议包或者在屏幕唤醒期间存储当前显示屏内容。

市面上提供的几种活动追踪器可显示它们所连接的智能手机上的短信、电话通知和日历活动,而这些均需要系统提供额外的存储空间。低功耗且具有 4 到 8 Mb 空间的扩展 RAM(易失性或非易失性)可解决这类难题。表 1 显示了这些常见组件的功耗比较。

表1:可穿戴设备组件的典型电流消耗
“”

可穿戴设备使用各种存储器实现不同功能。常见的存储器类型是非易失性存储器和 RAM。虽然 NOR 闪存是最常见的非易失性存储器类型,但 DRAM 和 SRAM 也可用于随机存取任务,如缓存和缓冲。大型智能手表、智能眼镜和虚拟现实头盔等高端可穿戴设备通常采用 DRAM,因为其存储密度较高。活动跟踪器和小型智能手表等较小的设备通常采用 SRAM 来实现比高密度存储器更低的功耗。由于它们采用的电池较小,且预期续航时间要长于较大的可穿戴设备,因此它们不能采用因刷新而导致功耗较高的 DRAM。在 DRAM 和 SRAM 之间进行选择时,需要对容量和功耗做出权衡。

本文及前几期文章仅仅介绍了少数几个可使购物体验智能化的组件。此外还有支持大量数据分析的各种摄像头、传感器、信标和显示屏。由于它们的存储器要求较低或多年未发生变化,目前暂不需要关注它们。

在这些组件得到广泛使用且发展水平超出了其当前使用范围时,我们将重新审视并研究它们如何影响半导体设计。无论如何,设备的基本要求不会改变,即在不影响性能的同时尽可能降低功耗、减小尺寸和提高可靠性。

相关阅读:

智能购物应用中的存储器——第一部分
智能购物应用中的存储器——第二部分

本文转载自: Cypress
转载地址:http://mp.weixin.qq.com/s/tf0y6bzFZFwomXhY4mDAfw
声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有,如涉及侵权,请联系小编进行处理。

围观 7

页面