在本文第一部分,我们探讨了如何利用IoT的先驱之一POS终端。这些智能POS终端通常是零售商采取的第一项措施,以便帮助他们追踪客户的购物习惯,管理库存,并通过促销活动提升客户忠诚度。所有主流POS终端供应商都推出了具备这些功能的型号,它们通常具备功能强大、紧凑、电池供电和安全的特点。这些要求都转移到这些设备使用的所有半导体芯片上。欲了解详情,您可点击参阅智能购物应用中的存储器——第一部分

接下来将为您介绍一些可能在不远的将来引入商场的其它关键设备。这些设备可以使客户获得一种互动性更强的购物体验,同时还能为零售商管理库存和改善客户服务。

电子货架标签(ESL)

商场雇员的一项日常工作就是在过道上来回走动,将价格和信息标签放置在货架上。对于经常开展促销活动的大型商场而言,他们几乎每天都要更新标价。不过,借助电子货架标签(ESL)技术,这项工作正被转移到线上完成。

电子货架标签是一项迅速崛起且广受欢迎的技术,它能够取代商场中每周都要更换的纸质标签,从而减少工作量和纸张浪费的现象。ESL技术还消除了货架和收银机之间的价格差,并能让商场灵活地随时修改价格。它的一个长期功能是:可让商场根据促销活动和具体客户的购物历史为其提供定制价格。例如,如果某位客户每周都要购买一打鸡蛋,商场可以为其提供一项订购计划,以鼓励其继续如此行事。

形式最简单的ESL由一个LCD或电子墨水显示屏、RF模块、配套处理器、纽扣电池和低引脚数存储器(易失性和非易失性存储器)构成。根据所需功能,商场可以将价格走势、购买走势和当前库存信息存储在ESL中,然后在一天结束的时候刷新中央服务器中的数据。使用一个低功耗控制器和存储器可让整个系统由一颗小纽扣电池供电,而且仍然可以工作数年。基于内置的连接选项(通常是BLE或Wi-Fi),板载存储器可兼作协议栈存储空间,绕过商场的中央服务器,直接连接用户手机。

“”
图1:ESL标签

鉴于电子货架标签(ESL)的成本和续航要求,大多数ESL将使用低端无线控制器,如德州仪器的WIFI+Zigbee SoC(CC253X系列)。这些控制器兼作处理和连接单元,并包含一个电子墨水显示屏、闪存以及用于创建和转发协议包的板载RAM。闪存通常用于存储引导代码,这些通常不会超过数个MB字节。因此,这些设备极少需要外置闪存,除非它们需要具备更丰富的特性和触摸功能。

但是,应用广泛的电子货架标签通常需要一个外置RAM,因为,8KB - 32KB的板载RAM用于临时存储代码执行空间,以及存储用于形成在下次上传至服务器时所使用协议包的数据。板载RAM限制了设备中形成的数据包的大小。系统的大部分电能用于建立基站连接。一旦建立连接后,为了优化功耗,系统应能上传协议栈所允许的最大数据包,而且理想的情况是,不应受到系统中可用存储空间的限制。

与使用一个内置大容量RAM的控制器相比,使用一个外置RAM要简单和划算得多。由于大多数控制器的引脚数有限,存储器如果能够通过SPI接口交互就更好。此外,为了不严重影响系统总的功率预算,它们需要支持低功耗。下表对比了一个连接控制器和一个外置存储器的功耗。

“”
表1:连接控制器和外置存储器的功耗对比

本文和上文只探讨了少数几种可让购物体验变得智能的组件。我们还将撰写一篇文章,介绍另外一种智能购物体验组件。除此之外还有很多其它组件,如摄像头、传感器、信标、显示屏、泛数据分析等等。

欲了解详情,您可点击参阅智能购物应用中的存储器——第一部分

围观 5

作者:Reuben George

市场背景

当今,物联网(IoT)已对所有行业产生了影响,而且有望到2020年成为一个1.7万亿美元的市场。IoT领域建立在云计算以及由移动、虚拟和即时连接搭建的数据采集传感器网络的基础之上。行业专家认为,它将让我们生活中的一切变得更加“智能”。IoT已经渗透至各行各业:从工厂自动化到点播娱乐和可穿戴设备。但在大多数情况下,这个庞大的智能设备互联系统在改变我们的工作方式方面还未充分发挥其全部潜能。

IoT无疑是推动半导体行业和嵌入式系统发展的新动力。它的诞生推升了市场对众多新使能技术的需求,其中包括:

  • 新一代超低功耗IC

  • 全新的无线通信协议

  • 分析及云计算用高级数据处理技术

随着芯片朝着更小尺寸的工艺节点迈进,此前相对不引人注目而现在变得愈发显眼的一个半导体细分市场就是存储器。物联网及其艾字节数量级的数据流量正在推升市场对高性能、低功耗、超小封装的存储器的需求。IoT对半导体-尤其是存储器的-强加的另一个约束就是安全性和可靠性要求。大量隐私信息将被存储在可穿戴设备、服务器和其它物联网节点上。

过去十年来,存储器领域被分为两个截然不同的产品家族:即快速和低功耗存储器,每个都有其自身的特性、应用和定价。只要愿意牺牲功耗甚至尺寸,OEM就能找到高速度性能的存储器产品。对于需要低功耗的易失性和非易失性存储器而言,反之亦然。

但是,IoT 改变了市场对存储器的要求。现在的需求是高性能、低功耗器件。这些器件被要求能够使用便携式电源执行复杂的运算。它们还必需尽量缩减引脚数量和外形尺寸。通过内置深度关机、深度睡眠等低功耗模式,同时提供一代高于一代的性能(即时钟频率和特性集),微控制器已可以满足这些要求。为了与微控制器保持同步,存储器一定不能让设计人员担忧性能和功耗之间的取舍。

本文将聚焦于存储器在已受IoT影响的一个领域―零售购物领域中的发展趋势。在借助IoT给消费者带来便利方面,这个2万亿美元的市场蕴含着巨大潜力。零售是世界上竞争最为激烈的行业之一,数百万个零售商争夺一个成熟客户群,因此利润率很低。大型商场已经开始利用物联网吸引客户,为他们提供个性化购物体验。零售商正在整合商场中的所有设备、公司总部云端资源。最终目标是一个互联商场,它能够利用所采集的数据进行促销、打造客户忠诚度、管理库存和提升运营效率。

当今的消费者正在广泛使用互联网影响他们的购物决策:从研究产品到网上购物再到评论产品。在利用互联网进行购物方面,零售商已经落后于消费者。为了跟上消费者的步伐,零售商正在关联零售的物理和在线层面,从而让每一次互动都有回报,以便让他们的商场变得更加“智能”。

智能POS终端

IoT已给零售领域带来的一个显著影响就是智能销售点(POS)终端。POS终端在某种意义上就是零售商使用IoT的中心节点。很多领先的“智能”商场利用POS数据了解客户的购物趋势,实时追踪库存,并帮助在线购物者准确确定产品的本地存货情况。它们还能帮助零售商根据客户购买特定物品的频率为他们提供定制建议。

为了追踪购物者的购物统计数据,智能POS终端需要连接扫描仪。这意味着智能POS终端必须处理数倍于传统POS终端所处理的数据。很多最新型号的智能POS终端采用了主频达到Ghz级别的最新的ARM处理器。与此同时,这些终端大多是由电池供电的便携式设备,换句话说,这些系统需要尽可能地少用电。此外,由于所传输的数据是高度个人化的数据,因此要求最高级别的数据完整性,即需要使用比传统终端更为严格的加密标准。最后,还要采用所有POS终端都采用的标准的故障安全技术(如lockout模式)。

POS终端采用多种类型的存储器:用于非易失性数据存储的闪存,用于高速缓存的DRAM,以及用于微控制器存储扩展和电池备份配置数据日志的SRAM。有时甚至会使用一个外置的MMC。图1显示了一个典型POS终端设计的框图,为了满足智能POS终端的要求,存储器应提供最高的可靠性和足够的带宽。不仅如此,为了满足便携要求,存储器还必须具备低功耗、小尺寸的特点。

过去,存储器的发展一直试图结合快速的存取速度、低功耗和小尺寸特性。但是,随着Octi-SPI、HyperBus™等新一代低引脚数接口的问世,现在出现了能够媲美甚至超过快速存取式存储器的带宽,同时匹敌低功耗存储器的功耗,并使用最低数量的微控制器引脚的存储器。从微控制器传承到SRAM等存储器的另一项创新技术就是引入了深度睡眠模式。例如,赛普拉斯的PowerSnooze™ SRAM就是一种深度睡眠能效媲美Micropower SRAM的Fast SRAM。

“”
图1. 这是现代POS终端的框图。所使用的存储器包括闪存、SRAM、DRAM和SD/MMC插槽。

让我们比较一下两种常用SRAM-Fast和Micropower,以及具备深度睡眠模式的Fast SRAM的功耗和存取时间。

“”

通过结合快速存取和深度睡眠特性,这些存储器能够媲美SRAM的速度和低功耗SRAM的能效。在SRAM在大多数时间处于待机状态的应用中,这种结合的优势更加显著。

在使用SRAM记录配置数据的一个典型POS终端中,SRAM的运行时间只占总工作时间的20%。如果这个SRAM是工作电压为3.3V的Fast SRAM,它工作时将消耗120瓦时(WH)的电能,待机时将消耗80 WH的电能,总能耗为200 WH。如果是一个具备深度睡眠模式的Fast SRAM,工作时仍消耗120 WH的电能,但待机时能耗降至0.06 WH,因此总能耗约为121 WH。在这个具体的例子中,深度睡眠选项将能耗降低了40%。

对于一颗240mAH的板载纽扣电池而言,一个处于待机状态的16Mb Fast SRAM将能让电池续航超过12小时,而一个处于待机状态的低功耗SRAM将能让电池续航超过3年,但后者的局限是存储速度较慢。此时,一个具备深度睡眠模式的Fast SRAM与低功耗SRAM相比优势显著,其带宽是后者的4倍多(即10ns存取时间vs. 45ns存取时间),而且没有功耗代价。尽管如此,无论是MCU或SRAM,使用深度睡眠模式时应考虑一个因素:进入和退出深度睡眠模式的时间。如果两个工作周期之间的时间间隔与SRAM进入或退出深度睡眠模式所用时间相比太短,那么这种方法将会无用。例如,对于赛普拉斯出品的具备深度睡眠模式的Fast SRAM而言,这个时间间隔是300 µs(最大)。这可能是推广具备深度睡眠模式的Fast SRAM的最大障碍。

存储器领域的另一个有趣趋势是:随着闪存变得越来越快,对高速缓存的需求正在发生改变。很多需要RAM的微控制器工艺现在可以利用XIP(Execute In Place)在闪存上实现。这意味着RAM越来越多被用于扩展内存或电池系统备份。与此同时,已被运用于这两种应用的SRAM正在增加容量选择。换句话说,传统上首选的DRAM正变得越来越不重要,因为就像容量更大、速度更快、功耗更低的闪存可以满足大型存储的需求那样,容量更高、功耗更低、尺寸更小的SRAM也可以满足小型存储的需求。

其他组件

用于构筑智能购物体验的还有很多其它组件:各种类型的传感器、电子货架标签及信标、存储设备以及用于处理所采集数据的数据处理终端。在一篇文章中探讨所有这些设备的应用和内存需求难度很大。我计划在近期探讨这些设备的内存需求。但是,基本的要求不变,即低功耗、高速、小尺寸和高可靠性。

您可以阅读Power Saving SRAM,进一步了解具备深度睡眠模式的SRAM。或访问Programmer's Guide to HyperFlash Memories,获取更多兼容HyperFlash 内存的设计系统的相关信息。

公司信息:Cypress

围观 17

在经历了2013年与2014年连续两年20%以上增长的好年景以后,2015年全球存储器市场陷入困境。无论是供应商合并、产能控制还是新型应用频出等过去认为是利好的事情,都没有拯救2015年的存储器市场。个人电脑市场的低迷导致存储器库存过多,从而在2015年下半年出现了价格暴跌,2015年存储器销售额最终为780亿美元,同比下降了3%。

  这种颓势延续到了2016年上半年,但从2016年下半年开始情况发生了变化,存储器价格开始变得异常坚挺,而且持续到了2016结束。但由于上半年跌价太狠,IC Insights估算2016全球存储器市场同比下降1%。

  IC Insights预计2017年存储器价格还将上涨,从而推动全球存储器市场规模达到创纪录的853亿美元,同比增长10%。该机构同时认为,今后几年存储器市场都将非常健康,在2020年之前每年都能保证增长,并于2020年达到1000亿美元的规模。2021年可能接近1100亿美元左右。

  IC Insights认为,从2016年到2021年年平均增长率可达7.3%,比集成电路整体市场年复合增长率高2.4个百分点,存储器模组的年复合增长率为5.6%,价格上涨成为存储器市场表现好的极大因素。不过IC Insights预计,从现在到2021年,每年存储器价格都将上涨,平均价格每年上涨1.8%。

  DRAM是2013与2014年存储器市场增长的主力军,但2015年DRAM销售额下降3%,2016年下跌10%,这导致全球存储器市场连续两年下跌。预计2017年DRAM价格将大幅上涨,从而带动DRAM市场增长11%。NAND闪存在2016年还是实现了增长,2017年将再增长10%。

围观 2