PCB板的抗干扰设计原则(下)

印刷电路板的抗干扰设计原则

  1. 可用串个电阻的办法,降低控制电路上下沿跳变速率。

  2.  尽量让时钟信号电路周围的电势趋近于 0,用地线将时钟区圈起来,时钟线要尽量短。

  3.  I/O 驱动电路尽量靠近印制板边。

  4. 闲置不用的门电路输出端不要悬空,闲置不用的运放正输入端要接地,负输入端接输出端。

  5. 尽量用 45°折线而不用 90°折线,  布线以减小高频信号对外的发射与耦合。

  6.  时钟线垂直于I/O 线比平行于I/O 线干扰小。

  7. 元件的引脚要尽量短。

  8. 石英晶振下面和对噪声特别敏感的元件下面不要走线。

  9. 弱信号电路、低频电路周围地线不要形成电流环路。

  10.  需要时,线路中加铁氧体高频扼流圈,分离信号、噪声、电源、地。

印制板上的一个过孔大约引起 0.6pF 的电容;一个集成电路本身的封装材料引起 2pF~10pF 的分布电容;一个线路板上的接插件,有 520μH 的分布电感;一个双列直插的 24 引脚集成电路插座,引入 4μH~18μH 的分布电感。

数字电路、单片机的抗干扰设计

在电子系统设计中,为了少走弯路和节省时间,应充分考虑并满足抗干扰性 的要求,避免在设计完成后再去进行抗干扰的补救措施。形成干扰的基本要素有三个:
干扰源,指产生干扰的元件、设备或信号,用数学语言描述如下:du/dt, di/dt 大的地方就是干扰源。如:雷电、继电器、可控硅、电机、高频时钟等都可 能成为干扰源。

传播路径,指干扰从干扰源传播到敏感器件的通路或媒介。典型的干扰传 播路径是通过导线的传导和空间的辐射。

敏感器件,指容易被干扰的对象。如:A/D、D/A 变换器,单片机,数字IC, 弱信号放大器等。

抗干扰设计的基本原则是:抑制干扰源,切断干扰传播路径,提高敏感器件的 抗干扰性能。

01、抑制干扰源

抑制干扰源就是尽可能的减小干扰源的du/dt,di/dt。这是抗干扰设计中最优 先考虑和最重要的原则,常常会起到事半功倍的效果。 减小干扰源的 du/dt 主要是通过在干扰源两端并联电容来实现。减小干扰源的di/dt 则是在干扰源回路串联电感或电阻以及增加续流二极管来实现。

抑制干扰源的常用措施如下:

  1. 继电器线圈增加续流二极管,消除断开线圈时产生的反电动势干扰。仅加 续流二极管会使继电器的断开时间滞后,增加稳压二极管后继电器在单位时间内可动作更多的次数。

  2. 在继电器接点两端并接火花抑制电路(一般是 RC 串联电路,电阻一般选几 K 到几十 K,电容选 0.01uF),减小电火花影响。

  3. 给电机加滤波电路,注意电容、电感引线要尽量短。

  4. 电路板上每个 IC 要并接一个 0.01μF~0.1μF 高频电容,以减小 IC 对电源的 影响。注意高频电容的布线,连线应靠近电源端并尽量粗短,否则,等于增大了电容的等效串联电阻,会影响滤波效果。

  5. 布线时避免 90 度折线,减少高频噪声发射。

  6. 可控硅两端并接 RC 抑制电路,减小可控硅产生的噪声(这个噪声严重时可能会把可控硅击穿的)。

按干扰的传播路径可分为传导干扰和辐射干扰两类。

所谓传导干扰是指通过导线传播到敏感器件的干扰。高频干扰噪声和 有用信号的频带不同,可以通过在导线上增加滤波器的方法切断高频干扰噪声的传播,有时也可加隔离光耦来解决。电源噪声的危害最大,要特别注意处理。
所谓辐射干扰是指通过空间辐射传播到敏感器件的干扰。 一般的解决方法是增加干扰源与敏感器件的距离,用地线把它们隔离和在敏感器件上加蔽罩。

02、切断干扰传播路径的常用措施如下:

(1)充分考虑电源对单片机的影响。电源做得好,整个电路的抗干扰就解决了一大半。许多单片机对电源噪声很敏感, 要给单片机电源加滤波电路或稳压器,以减小电源噪声对单片机的干扰。比如,可以利用磁珠和电容组成π 形滤波电路,当然条件要求不高时也可用 100Ω 电阻代替磁珠。

(2)如果单片机的I/O 口用来控制电机等噪声器件,在I/O 口与噪声源之间应加隔离(增加π 形滤波电路)。 控制电机等噪声器件,在I/O 口与噪声源之间应加隔离(增加π 形滤波电路)。

(3)注意晶振布线。晶振与单片机引脚尽量靠近,用地线把时钟区隔离起来,晶振外壳接地并固定。此措施可解决许多疑难问题。

(4)电路板合理分区,如强、弱信号,数字、模拟信号。尽可能把干扰源 (如电机,继电器)与敏感元件(如单片机)远离。

(5)用地线把数字区与模拟区隔离,数字地与模拟地要分离,最后在一点接于电源地。A/D、D/A 芯片布线也以此为原则,厂家分配 A/D、D/A 芯片 引脚排列时已考虑此要求。

(6)单片机和大功率器件的地线要单独接地,以减小相互干扰。 大功率器件尽可能放在电路板边缘。

(7)在单片机 I/O 口,电源线,电路板连接线等关键地方使用抗干扰元件 如磁珠、磁环、电源滤波器,屏蔽罩,可显著提高电路的抗干扰性能。

03、 提高敏感器件的抗干扰性能

提高敏感器件的抗干扰性能是指从敏感器件这边考虑尽量减少对干扰噪声 的拾取,以及从不正常状态尽快恢复的方法。

提高敏感器件抗干扰性能的常用措施如下:

  1. 布线时尽量减少回路环的面积,以降低感应噪声。

  2. 布线时,电源线和地线要尽量粗。除减小压降外,更重要的是降低耦合噪声。

  3. 对于单片机闲置的I/O 口,不要悬空,要接地或接电源。其它IC 的闲置 端在不改变系统逻辑的情况下接地或接电源。

  4. 对单片机使用电源监控及看门狗电路,如:IMP809,IMP706,IMP813,X25043,X25045 等,可大幅度提高整个电路的抗干扰性能。

  5. 在速度能满足要求的前提下,尽量降低单片机的晶振和选用低速数字 电路。

  6. IC 器件尽量直接焊在电路板上,少用IC 座。

软件方面:

  1. 我习惯于将不用的代码空间全清成“0”,因为这等效于 NOP,可在程序跑飞时归位;

  2. 在跳转指令前加几个 NOP,目的同 1;

  3. 在无硬件WatchDog  时可采用软件模拟WatchDog,以监测程序的运行;

  4. 涉及处理外部器件参数调整或设置时,为防止外部器件因受干扰而出错可定时将参数重新发送一遍,这样可使外部器件尽快恢复正确;

  5. 通讯中的抗干扰,可加数据校验位,可采取 3 取 2 或 5 取 3 策略;

  6. 在有通讯线时,如 I^2C、三线制等,实际中我们发现将 Data 线、CLK 线、INH 线常态置为高,其抗干扰效果要好过置为低。

硬件方面:

  1. 地线、电源线的部线肯定重要了!

  2. 线路的去偶;

  3. 数、模地的分开;

  4. 每个数字元件在地与电源之间都要 104 电容;

  5. 在有继电器的应用场合,尤其是大电流时,防继电器触点火花对电路的干扰,可在继电器线圈间并一 104 和二极管,在触点和常开端间接 472 电容,效果不错!

  6. 为防I/O 口的串扰,可将I/O 口隔离,方法有二极管隔离、门电路隔离、光偶隔离、电磁隔离等;

  7. 当然多层板的抗干扰肯定好过单面板,但成本却高了几倍。

  8. 选择一个抗干扰能力强的器件比之任何方法都有效,我想这点应该最重要。因为器件天生的不足是很难用外部方法去弥补的,但往往抗干扰能力强的就贵些,抗干扰能力差的就便宜,正如台湾的东东便宜但性能却大打折扣一样!主要看各位的应用场合。

印制电路板(PC8)是电子产品中电路元件和器件的支撑件.它提供电路元件和器件之间的电气连接。随着电于技术的飞速发展,PGB 的密度越来越高。PCB 设计的好坏对抗干扰能力影响很大.因此,在进行 PCB设计时.必须遵守 PCB 设计的一般原则,并应符合抗干扰设计的要求。

相关阅读:
PCB板的抗干扰设计原则(上)

本文转载自: 志博PCB
免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理。

点击这里,获取更多关于应用和技术的有关信息
点击这里,获取更多工程师博客的有关信息

推荐阅读