应该收入囊中的PCB层叠EMC系列知识(二)

之前跟大家分享过“PCB层叠EMC系列”知识,提到了四层板和六层板,今天我们一起看看八层半和十层板。

回顾请戳链接:PCB层叠EMC系列知识

八层板

一个八层板可以用来增加两个走线层或通过增加两个平面来提高EMC性能。虽然我们看到了这两种情况的例子,但我想说的是8层板层叠的大多数用于提高EMC性能,而不是增加额外的走线层。

八层板比六层板成本增加的百分比小于从四层增加到六层的百分比,因此更容易证明成本增加是为了改善EMC性能。

因此,大多数八层板(以及我们将在这里集中讨论的所有板)由四个布线层和四个平面层组成。

八层板第一次为我们提供了机会,可以轻松地满足最初提出的五个目标。尽管有许多可能的层叠结构,但我们只讨论通过提供出色的EMC性能证明了的少数几种层叠。

如上所述,通常使用8层来提高电路板的EMC性能,而不是增加布线层的数量。

无论您决定如何堆叠这些层,都绝对不建议使用包含六个布线层的八层板。如果你需要六个布线层,你应该使用一个十层板。因此,八层板可以看作是具有最佳EMC性能的六层板。

具有出色EMC性能的8层板基本层叠结构见图9。

“”

这种配置满足第1部分中列出的所有目标。所有的信号层都与平面相邻,并且所有的层紧密耦合在一起。

高速信号被埋在平面之间,因此平面提供屏蔽,以减少这些信号的发射。此外,该板使用多个接地平面,从而降低接地阻抗。

为了获得最佳的EMC性能和信号完整性,当高频信号换层(例如,从第4层到第5层)时,应该在靠近信号过孔的两个地平面之间添加一个地对地过孔,以便为电流提供一个就近的返回路径。

图9中的层叠可以通过对2-3层和6-7层采用某种形式的PCB埋容技术(如Zycon埋容)进一步改进。这种方法在高频去耦方面提供了显著的改进,并允许使用更少的离散去耦电容

图10显示了另一个优秀的配置,也是我最喜欢的配置之一。这种结构类似于图7,但包括两个外层地面。通过这种安排,所有布线层都被埋在平面之间,因此被屏蔽。

“”

H1表示信号1的水平走线层,V1表示信号1的垂直走线层。H2和V2对于信号2表示相同的,虽然不常用,但这种配置也满足前面提出的所有五个目标,并且具有走线相邻于同一平面的正交信号的额外优势。

这种配置的典型层间距可能是.010"/0.005"/0.005"/0.20"/0.005"/0.005"/0.010"。

八层板的另一种可能性是通过将平面移动到图11所示的中心来修改图10。这样做的好处是有一个紧密耦合的电源接地平面对,而不能屏蔽迹线。

“”

这基本上是图7的8层版本。它具有图7所列的所有优点,再加上中心的一个紧密耦合的电源接地平面对。

这种配置的典型层间距可能0.006"/0.006"/0.015"/0.006"/0.015"/0.006"/0.006"/0.006"。这种配置满足目标1和2、3和5,但不满足目标4。

这是一种性能优良的配置,具有良好的信号交互性,由于电源/地平面是紧密耦合的,因此常常比图10中的层叠更可取。

图11中的层叠可以通过对4-5层采用某种形式的PCB埋容技术(如Zycon埋容)进一步改进。

使用8层以上的电路板几乎没有EMC优势。通常,只有在信号迹线布线需要额外的层时,才会使用多于8层的层叠。如果需要6个走线层,则应使用10层板。

十层板

当需要6个布线层时,应该使用10层板。因此,十层板通常有六个信号层和四个平面,不建议在10层板上有6个以上的信号层。

十层也是在0.062英寸厚的板上通常可以方便地制造的最大层数,偶尔你会看到一块0.062英寸厚的12层板,但能生产它的制造商数量有限。

高层数板(10 +)需要薄的介质(通常0.006”或低于0.062”厚板),因此它们之间自动紧密耦合。当正确地设置层叠和布线,他们可以满足我们的所有目标,并将有出色的EMC性能和信号完整性。

图12中显示了一个非常常见且近乎理想的十层板层叠。这种叠层之所以具有如此好的性能,是因为信号与回流面的紧密耦合、高速信号层的屏蔽、多个地平面的存在以及板中心的电源/地平面对的紧密耦合。

高速信号通常布在平面之间的信号层上(本例中为3-4层和7-8层)。

“”

在这种配置中,对正交走线信号进行配对的常用方法是层1和层10(只走低频信号),以及层3和层4和层7和层8(都走高速信号)。

通过这种方式对信号进行配对,第2层和第9层上的平面为内层上的高频信号布线提供屏蔽。

此外,第3层和第4层的信号通过中心电源/地平面对与第7层和第8层的信号隔离。

例如,高速时钟可能在其中一对上布线,高速地址和数据总线可能在另一对上布线。这样一来,总线就受到了保护,不受干扰平面发出的时钟噪音污染。

这种层叠满足所有5个原始目标。

在图12所示的十层板上布线正交信号的另一种可能性是将层1和层3、层4和层7、层8和层10配对。在层1和3、层8和层10的情况下,该方法的优点是参考同一平面布正交信号。

当然,缺点是如果第1层和/或第10层上有高频信号,PCB平面就没有提供固有的屏蔽。因此,这些信号层应该非常靠近它们相邻的平面(这在十层板的情况下是自然发生的)。

上面讨论的每一种布线配置都有一些优点和一些缺点,如果仔细设计,任何一种都可以提供良好的EMC和信号完整性性能。

图12中的层叠可以通过对第5层和第6层采用某种形式的嵌入式PCB电容技术(如Zycon埋容)进一步改进,从而提高高频电源/地平面去耦。

图13显示了十层板的另一种可能的层叠。

“”

这种配置放弃了紧密间隔的电源/地平面对,作为回报,它提供三个信号布线层对的屏蔽,该屏蔽由板外层的接地平面实现,并且这些布线层对由内部电源和接地平面相互隔离。

在这种结构中,所有的信号层都被屏蔽并彼此隔离。如果只有很少的低速信号可以放在外部信号层上(如图12所示),并且大多数信号都是高速的,那么图13的叠加是非常可取的,因为它提供了三对屏蔽的信号布线层。

这种层叠的一个问题是,在高密度PCB板上,器件安装焊盘和过孔会严重地破坏外部地平面。这个问题必须得到解决,并且要外部层要仔细布线。

这种配置满足目标1、2、4和5,但不满足目标3。

第三种可能性如图14所示。这种叠加允许相邻于同一平面的正交信号的布线,但在此过程中也必须放弃紧密间隔的电源/地平面。这种配置类似于图10所示的八层板,外加两个外低频路由层。

“”

图14中的配置满足目标1、2、4和5,但不满足目标3。然而,它还有一个额外的优点,即正交布线信号总是参考同一平面。

图14中的层叠可以通过对第2层和第9层采用某种形式的嵌入式PCB电容技术(如Zycon埋容)来进一步改进(从而满足目标3),但这可以有效地将其转换为12层板。

总结

前面的部分已经讨论了各种方法,以堆叠高速,数字逻辑,PCBs从四层到十层。一个好的PCB层叠减少辐射,提高信号质量,并有助于电源总线去耦。

没有一种层叠是最好的,在每种情况下都有许多可行的选择,通常需要对目标做出一些妥协。

除了层数、层类型(平面或信号)和层的排列顺序外,以下因素在决定板的EMC性能时也非常重要:

● 层间距;
● 为信号的正交布线分配信号层对;
● 给信号(时钟、总线、高速、低频等)分配布线层对

本文对板层叠的讨论采用标准的0.062”厚板,截面对称,采用传统的过孔技术。如果考虑到盲孔、埋孔或微孔,其它因素也会发挥作用,且另外的板层叠不仅成为可能而且在许多情况下是可取的。

本文转载自:EDA365电子论坛
免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理。

点击这里,获取更多关于应用和技术的有关信息
点击这里,获取更多工程师博客的有关信息

推荐阅读